Mostrar el registro sencillo del ítem

dc.contributor.author
Montero Bulacio, Enrique  
dc.contributor.author
Romagnoli, Martín  
dc.contributor.author
Otegui, Maria Elena  
dc.contributor.author
Chan, Raquel Lia  
dc.contributor.author
Portapila, Margarita Isabel  
dc.date.available
2024-02-22T15:00:07Z  
dc.date.issued
2023-02  
dc.identifier.citation
Montero Bulacio, Enrique; Romagnoli, Martín; Otegui, Maria Elena; Chan, Raquel Lia; Portapila, Margarita Isabel; OSTRICH-CROPGRO multi-objective optimization methodology for calibration of the growing dynamics of a second-generation transgenic soybean tolerant to high temperatures and dry growing conditions; Elsevier; Agricultural Systems; 205; 2-2023; 1-14  
dc.identifier.issn
0308-521X  
dc.identifier.uri
http://hdl.handle.net/11336/228082  
dc.description.abstract
CONTEXT: Current estimates show that the impact of climate change on agriculture will result in yield losses in major crops of 8–43%, mainly due to a combination of drought and heat. Second-generation transgenic crops are expected to mitigate these constraints. Soybean HaHB4 is a second-generation transgenic crop tolerant to high temperatures and dry growing conditions created in Argentina carrying the sunflower HaHB4 gene. Soybean HaHB4 has been approved in Argentina, the United States, Brazil, Paraguay, Canada and China. OBJECTIVE: This study presents a robust methodology to calibrate the CROPGRO-soybean model for the growth and development of soybean HaHB4. The approach consists of a holistic treatment of calibration parameters, objective functions, model responses and measured data. Based on the differences between transgenic and controls obtained in field trials, the proposed methodology includes species parameters related to those physiological traits that present the most significant differences, i.e. heat and drought tolerance with no yield penalties, increased light interception and photosynthetic rate, increased crop biomass and crop yield and improved water use efficiency. METHODS: We define multiple objective functions as a way of handling multiple simulated responses in the calibration procedure. For this, we connect CROPGRO with the OSTRICH software toolkit. Adjustments for initial water content in the soil profile, soil root growth factor and root depth progression were made using soft data procedures. The basic procedure for automatic calibration was modified by considering a semi-automated calibration process. The calibration sequence considers phenological development, water balance, biomass and yield parameters. RESULTS AND CONCLUSIONS: We observed good accuracy in the calibrated simulation of soybean HaHB4 development at all phenological stages, with RMSE = 1.62 days. The soil water balance reached RMSE = 27.4 mm. An acceptable biomass simulation at maturity was reached, with RMSE = 34% of average observed values. The grain yield was well predicted, with RMSE = 636 kg/ha. To verify the robustness of the calibrated model we evaluated it for grain yield prediction in fourteen field experiments for different growing seasons, water conditions and locations across the Argentine Pampas. The model accurately simulated grain yield with RMSE = 408 kg/ha, d-index = 0.93 and R2=0.77. SIGNIFICANCE: This study provides a calibration procedure for climate-resilient cultivars that are still missing for long-term studies on climate change impacts. The importance of modelling a climate-resilient crop in the framework of the soil–plant-atmosphere system is a step towards ensuring food security.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COUPLING OSTRICH-CROPGRO  
dc.subject
HEAT AND DROUGHT STRESSES  
dc.subject
MULTI-OBJECTIVE CALIBRATION  
dc.subject
SOYBEAN HAHB4  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
OSTRICH-CROPGRO multi-objective optimization methodology for calibration of the growing dynamics of a second-generation transgenic soybean tolerant to high temperatures and dry growing conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-02T15:42:21Z  
dc.journal.volume
205  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Montero Bulacio, Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Romagnoli, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.description.fil
Fil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina  
dc.description.fil
Fil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Agricultural Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308521X22002190  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agsy.2022.103583