Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using SAOCOM data and Bayesian Inference to estimate soil dielectric constant in agricultural soils

Arellana, Javier EnriqueIcon ; Franco, Mariano AndrésIcon ; Grings, Francisco MatiasIcon
Fecha de publicación: 07/2023
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Geoscience and Remote Sensing Letters
ISSN: 1545-598X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Soil moisture is a key geophysical variable that can be estimated using remote-sensing techniques by making use of the known relation between soil backscattering and the dielectric constant in the microwave regime. However, since SAR system observations depend on geometrical and dielectric surface parameters (besides instrument parameters like operation frequency, incidence angle, and received/transmitted polarization), the uncertainties associated with a given retrieval scheme are difficult to evaluate. In this letter, these uncertainties associated with the estimation of soil dielectric constant from a single quad-pol SAR image are studied using a physically based interaction model (i.e., a two-layer version of the small perturbation method (SPM) model at second order) coupled with a Bayesian approach. The overall scheme was validated using SAOCOM quad-pol data and in situ soil dielectric constant measurements in experimental agricultural plots in Argentina. Both theoretical end-to-end experiments and actual retrieval from real SAR data were implemented. From the simulations, the intrinsic ambiguities in the estimations of soil dielectric constant from a single image were studied, and the benefits of using two images with different incidence angles were discussed. Finally, by analyzing SAOCOM data using the proposed retrieval scheme, soil dielectric constants were estimated and compared with in situ measurements, with a root-mean-square error (RMSE) of ≤2.
Palabras clave: BAYESIAN METHODS , ELECTROMAGNETIC AND REMOTE SENSING , INVERSE PROBLEMS , SOIL MOISTURE , SYNTHETIC APERTURE RADAR
Ver el registro completo
 
Archivos asociados
Tamaño: 4.192Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228066
URL: https://ieeexplore.ieee.org/document/10185149
DOI: http://dx.doi.org/10.1109/LGRS.2023.3296094
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Arellana, Javier Enrique; Franco, Mariano Andrés; Grings, Francisco Matias; Using SAOCOM data and Bayesian Inference to estimate soil dielectric constant in agricultural soils; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 20; 7-2023; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES