Mostrar el registro sencillo del ítem
dc.contributor.author
Boente Boente, Graciela Lina

dc.contributor.author
Parada, Daniela Laura

dc.date.available
2024-02-22T13:41:45Z
dc.date.issued
2023-11
dc.identifier.citation
Boente Boente, Graciela Lina; Parada, Daniela Laura; Robust estimation for functional quadratic regression models; Elsevier Science; Computational Statistics and Data Analysis; 187; 107798; 11-2023; 1-24
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/228040
dc.description.abstract
Functional quadratic regression models postulate a polynomial relationship rather than a linear one between a scalar response and a functional covariate. As in functional linear regression, vertical and especially high–leverage outliers may affect the classical estimators. For that reason, providing reliable estimators in such situations is an important issue. Taking into account that the functional polynomial model is equivalent to a regression model that is a polynomial of the same order in the functional principal component scores of the predictor processes, our proposal combines robust estimators of the principal directions with robust regression estimators based on a bounded loss function and a preliminary residual scale estimator. Fisher–consistency of the proposed method is derived under mild assumptions. Consistency, asymptotic robustness as well as an expression for the influence function of the related functionals are derived when the covariates have a finite–dimensional expansion. The results of a numerical study show the benefits of the robust proposal over the one based on sample principal directions and least squares for the considered contaminating scenarios. The usefulness of the proposed approach is also illustrated through the analysis of a real data set which reveals that when the potential outliers are removed the classical method behaves very similarly to the robust one computed with all the data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
FUNCTIONAL DATA ANALYSIS
dc.subject
FUNCTIONAL PRINCIPAL COMPONENTS
dc.subject
FUNCTIONAL QUADRATIC MODELS
dc.subject
ROBUST ESTIMATION
dc.subject.classification
Estadística y Probabilidad

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Robust estimation for functional quadratic regression models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-22T11:07:34Z
dc.journal.volume
187
dc.journal.number
107798
dc.journal.pagination
1-24
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Parada, Daniela Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.journal.title
Computational Statistics and Data Analysis

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2023.107798
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947323001093
Archivos asociados