Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Incorporating non-genetic evidence in large scale missing person searches: A general approach beyond filtering

Marsico, Franco LeonelIcon ; Caridi, Délida InésIcon
Fecha de publicación: 09/2023
Editorial: Elsevier Ireland
Revista: Forensic Science International: Genetics
ISSN: 1872-4973
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

The search for missing persons implies several steps, from the preliminary investigation that involves collecting background data related to the case to the genetic kinship testing. Despite its crucial importance in identifications, only some approaches mathematically formalize the possibility of using preliminary investigation data. In some cases, a filtering strategy is applied, which implies selecting a subset of possible victims where some non-genetic variables perfectly match those of the missing. Through a Bayesian approach, we propose a mathematical model for computing the prior odds based on non-genetic variables usually collected during the preliminary investigation, such as biological sex, hair colour, and age. We use computational simulations to show how to incorporate these prior odds in DNA-database searches. Importantly, our results suggest that applying the proposed model leads to better search performance in underpowered cases from the genetic point of view, where few or distant relatives of the missing person are available for genotyping. Furthermore, the results are also helpful when using non-genetic data for prior odds in well-powered cases, where genetic data are enough to reach a reliable conclusion. It performs better than other approaches, such as using non-genetic data for filtering. The software mispitools, freely available on CRAN, implements all described methods (https://CRAN.R-project.org/package=mispitools).
Palabras clave: BAYESIAN APPROACH , LIKELIHOOD RATIO MODELS , MISSING PERSON , PHENOTYPE VARIABLES , PRELIMINARY INVESTIGATION , PRIOR ODDS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.111Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228019
URL: https://www.sciencedirect.com/science/article/abs/pii/S1872497323000662
DOI: http://dx.doi.org/10.1016/j.fsigen.2023.102891
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Marsico, Franco Leonel; Caridi, Délida Inés; Incorporating non-genetic evidence in large scale missing person searches: A general approach beyond filtering; Elsevier Ireland; Forensic Science International: Genetics; 66; 9-2023; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES