Mostrar el registro sencillo del ítem

dc.contributor.author
Arcón Carballo, Victoria Eugenia  
dc.contributor.author
Caridi, Délida Inés  
dc.contributor.author
Pinasco, Juan Pablo  
dc.contributor.author
Schiaffino, Pablo  
dc.date.available
2024-02-22T13:14:07Z  
dc.date.issued
2023-06  
dc.identifier.citation
Arcón Carballo, Victoria Eugenia; Caridi, Délida Inés; Pinasco, Juan Pablo; Schiaffino, Pablo; Segregation patterns for non-homogeneous locations in Schellings model; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 120; 6-2023; 1-17  
dc.identifier.issn
1007-5704  
dc.identifier.uri
http://hdl.handle.net/11336/228018  
dc.description.abstract
We study a variant of the classical spatial proximity Schelling's segregation model, including a function that breaks the homogeneity over the land. This weighting function represents objective and subjective assessments or valuations of the territory. It justifies why the agents give importance to their neighbors according to the locations they occupy. In this new model, agents belong to two ethnic groups and react when a proportion of their neighbors weighted with the land function is above a tolerance parameter. We show that a smooth behavior of the weighting function, with few maxima and minima, gives rise to large-scale segregation. In contrast, highly oscillating weights generate more fragmented patterns, with smaller clusters. We present computational simulations of this phenomenon and relate them to several American cities’ segregation patterns. Also, we characterize the equilibria of the model as minimizers of a weighted, discrete, Laplacian eigenvalue problem, derived from a Hamiltonian or total energy of a particle system. This framework allows proving that total segregation results for the particular condition of a weighting function with a single minimum, with two clusters of maximum size. Besides, we predict the place where the clusters will appear. These analytical results agree with computational simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AGENT-BASED MODEL  
dc.subject
RESIDENTIAL SEGREGATION  
dc.subject
SCHELLING MODEL  
dc.subject
SEGREGATION PATTERNS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Segregation patterns for non-homogeneous locations in Schellings model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-22T11:24:40Z  
dc.journal.volume
120  
dc.journal.pagination
1-17  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Arcón Carballo, Victoria Eugenia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Schiaffino, Pablo. Universidad Torcuato Di Tella; Argentina  
dc.journal.title
Communications In Nonlinear Science And Numerical Simulation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1007570423000588  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.cnsns.2023.107140