Artículo
Estimators for ROC curves with missing biomarkers values and informative covariates
Bianco, Ana Maria
; Boente Boente, Graciela Lina
; González Manteiga, Wenceslao; Pérez González, Ana
Fecha de publicación:
01/2023
Editorial:
Springer Heidelberg
Revista:
Statistical Methods And Applications
ISSN:
1618-2510
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present three estimators of the ROC curve when missing observations arise among the biomarkers. Two of the procedures assume that we have covariates that allow to estimate the propensity and and from this information, the estimators are obtained using an inverse probability weighting method or a smoothed version of it. The third one assumes that the covariates are related to the biomarkers through a regression model which enables us to construct convolution–based estimators of the distribution and quantile functions. Consistency results are obtained under mild conditions. Through a numerical study we evaluate the finite sample performance of the different proposals. A real data set is also analysed.
Palabras clave:
CONSISTENCY
,
COVARIATES
,
MISSING DATA
,
ROC CURVES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Estimators for ROC curves with missing biomarkers values and informative covariates; Springer Heidelberg; Statistical Methods And Applications; 32; 3; 1-2023; 931-956
Compartir
Altmétricas