Mostrar el registro sencillo del ítem

dc.contributor.author
Clavijo, Javier José  
dc.contributor.author
Martínez Linares, Julián Facundo  
dc.date.available
2024-02-22T12:35:51Z  
dc.date.issued
2023-06  
dc.identifier.citation
Clavijo, Javier José; Martínez Linares, Julián Facundo; Adversarial learning of permanent seismic deformation from GNSS coordinate timeseries; Pergamon-Elsevier Science Ltd; Computers & Geosciences; 175; 6-2023; 1-13  
dc.identifier.issn
0098-3004  
dc.identifier.uri
http://hdl.handle.net/11336/228008  
dc.description.abstract
Deformation produced by an earthquake has a wide variety of forms. Therefore, there are a variety of models for quantifying the amount of deformation observed on GNSS coordinate timeseries, each of them based on different assumptions about the underlying mechanism that generates the data. Hence, it is of interest to look for methods relying on minimal assumptions about the observed position series. In this work we propose a semiparametric method, based on adversarial learning, to perform inference of the permanent seismic deformation. The only assumption made is that the probability distributions of GNSS fixed-length coordinate series for periods with and without observable seismic deformation differs mainly in the permanent deformation, represented by an additive scaled heaviside function. A dataset based on the series of GNSS coordinates published by the Nevada Geodetic Laboratory was built, and an adversarial model was trained over this dataset. In order to train the algorithm, an initial labeling of the samples was conducted using time, position an magnitude information of seismic events from the USGS database. It was shown that learning was possible with the available real data, and multiple sanity checks were run, showing consistency of the offset estimations compared with a trajectory model based estimator and with published offsets for well studied events on the South American active margin. To assess the capabilities of the method in a more controlled environment, further experiments were conducted on synthetic data. Those experiments confirmed that the presence of postseismic transient signals does not impede learning. As a derivative, our proposal allows to refine imperfect initial estimations for the presence/absence of seismic deformation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADVERSARIAL LEARNING  
dc.subject
GENERATIVE MODELS  
dc.subject
GNSS  
dc.subject
SEISMIC DISPLACEMENT  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Adversarial learning of permanent seismic deformation from GNSS coordinate timeseries  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-22T11:31:48Z  
dc.journal.volume
175  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Clavijo, Javier José. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Martínez Linares, Julián Facundo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Computers & Geosciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cageo.2023.105344