Mostrar el registro sencillo del ítem
dc.contributor.author
Clavijo, Javier José
dc.contributor.author
Martínez Linares, Julián Facundo
dc.date.available
2024-02-22T12:35:51Z
dc.date.issued
2023-06
dc.identifier.citation
Clavijo, Javier José; Martínez Linares, Julián Facundo; Adversarial learning of permanent seismic deformation from GNSS coordinate timeseries; Pergamon-Elsevier Science Ltd; Computers & Geosciences; 175; 6-2023; 1-13
dc.identifier.issn
0098-3004
dc.identifier.uri
http://hdl.handle.net/11336/228008
dc.description.abstract
Deformation produced by an earthquake has a wide variety of forms. Therefore, there are a variety of models for quantifying the amount of deformation observed on GNSS coordinate timeseries, each of them based on different assumptions about the underlying mechanism that generates the data. Hence, it is of interest to look for methods relying on minimal assumptions about the observed position series. In this work we propose a semiparametric method, based on adversarial learning, to perform inference of the permanent seismic deformation. The only assumption made is that the probability distributions of GNSS fixed-length coordinate series for periods with and without observable seismic deformation differs mainly in the permanent deformation, represented by an additive scaled heaviside function. A dataset based on the series of GNSS coordinates published by the Nevada Geodetic Laboratory was built, and an adversarial model was trained over this dataset. In order to train the algorithm, an initial labeling of the samples was conducted using time, position an magnitude information of seismic events from the USGS database. It was shown that learning was possible with the available real data, and multiple sanity checks were run, showing consistency of the offset estimations compared with a trajectory model based estimator and with published offsets for well studied events on the South American active margin. To assess the capabilities of the method in a more controlled environment, further experiments were conducted on synthetic data. Those experiments confirmed that the presence of postseismic transient signals does not impede learning. As a derivative, our proposal allows to refine imperfect initial estimations for the presence/absence of seismic deformation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ADVERSARIAL LEARNING
dc.subject
GENERATIVE MODELS
dc.subject
GNSS
dc.subject
SEISMIC DISPLACEMENT
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Adversarial learning of permanent seismic deformation from GNSS coordinate timeseries
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-22T11:31:48Z
dc.journal.volume
175
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Clavijo, Javier José. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Martínez Linares, Julián Facundo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.journal.title
Computers & Geosciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cageo.2023.105344
Archivos asociados