Mostrar el registro sencillo del ítem
dc.contributor.author
Tzoumas, Georgios
dc.contributor.author
Pitonakova, Lenka
dc.contributor.author
Salinas, Lucio Rafael
dc.contributor.author
Scales, Charles
dc.contributor.author
Richardson, Thomas
dc.contributor.author
Hauert, Sabine
dc.date.available
2024-02-21T14:38:45Z
dc.date.issued
2023-02
dc.identifier.citation
Tzoumas, Georgios; Pitonakova, Lenka; Salinas, Lucio Rafael; Scales, Charles; Richardson, Thomas; et al.; Wildfire detection in large-scale environments using force-based control for swarms of UAVs; Springer; Swarm Intelligence; 17; 1-2; 2-2023; 89-115
dc.identifier.issn
1935-3812
dc.identifier.uri
http://hdl.handle.net/11336/227832
dc.description.abstract
Wildfres afect countries worldwide as global warming increases the probability of their appearance. Monitoring vast areas of forests can be challenging due to the lack of resources and information. Additionally, early detection of wildfres can be benefcial for their mitigation. To this end, we explore in simulation the use of swarms of uncrewed aerial vehicles (UAVs) with long autonomy that can cover large areas the size of California to detect early stage wildfres. Four decentralised control algorithms are tested: (1) random walking, (2) dispersion, (3) pheromone avoidance and (4) dynamic space partition. The frst three adaptations are known from literature, whereas the last one is newly developed. The algorithms are tested with swarms of diferent sizes to test the spatial coverage of the system in 24 h of simulation time. Best results are achieved using a version of the dynamic space partition algorithm (DSP) which can detect 82% of the fres using only 20 UAVs. When the swarm consists of 40 or more aircraft 100% coverage can also be achieved. Further tests of DSP show robustness when agents fail and when new fres are generated in the area.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DYNAMIC SPACE PARTITION
dc.subject
MONITORING
dc.subject
PHYSICOMIMETICS
dc.subject
SWARMS
dc.subject
UAVS
dc.subject
WILDFIRES
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Wildfire detection in large-scale environments using force-based control for swarms of UAVs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-19T10:51:16Z
dc.identifier.eissn
1935-3820
dc.journal.volume
17
dc.journal.number
1-2
dc.journal.pagination
89-115
dc.journal.pais
Suiza
dc.description.fil
Fil: Tzoumas, Georgios. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido
dc.description.fil
Fil: Pitonakova, Lenka. University of Bristol; Reino Unido. Windracers Ltd; Reino Unido
dc.description.fil
Fil: Salinas, Lucio Rafael. University of Bristol; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Bristol Robotics Laboratory; Reino Unido
dc.description.fil
Fil: Scales, Charles. Windracers Ltd; Reino Unido
dc.description.fil
Fil: Richardson, Thomas. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido
dc.description.fil
Fil: Hauert, Sabine. University of Bristol; Reino Unido. Bristol Robotics Laboratory; Reino Unido
dc.journal.title
Swarm Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11721-022-00218-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11721-022-00218-9
Archivos asociados