Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning applied in maternal and fetal health: A narrative review focused on pregnancy diseases and complications

Mennickent, Daniela; Rodríguez, Andrés; Opazo, María Cecilia; Riedel, Claudia A.; Castro, Erica; Eriz Salinas, Alma; Appel Rubio, Javiera; Aguayo, Claudio; Damiano, Alicia ErmelindaIcon ; Guzmán Gutiérrez, Enrique; Araya, Juan
Fecha de publicación: 05/2023
Editorial: Frontiers Media
Revista: Frontiers in Endocrinology
e-ISSN: 1664-2392
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Patología

Resumen

Introduction: Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. Aim: To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Methodology: Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. Current state: ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. Future challenges: To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. Conclusion: The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
Palabras clave: ADVERSE PERINATAL OUTCOMES , ARTIFICIAL INTELLIGENCE , MACHINE LEARNING , PREGNANCY COMPLICATIONS , PREGNANCY DISEASES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 905.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227723
DOI: http://dx.doi.org/10.3389/fendo.2023.1130139
URL: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2023.1
Colecciones
Articulos(IFIBIO HOUSSAY)
Articulos de INSTITUTO DE FISIOLOGIA Y BIOFISICA BERNARDO HOUSSAY
Citación
Mennickent, Daniela; Rodríguez, Andrés; Opazo, María Cecilia; Riedel, Claudia A.; Castro, Erica; et al.; Machine learning applied in maternal and fetal health: A narrative review focused on pregnancy diseases and complications; Frontiers Media; Frontiers in Endocrinology; 14; 1130139; 5-2023; 1-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES