Mostrar el registro sencillo del ítem

dc.contributor.author
Montoya, Oscar Danilo  
dc.contributor.author
Serra, Federico Martin  
dc.contributor.author
Gil González, Walter  
dc.date.available
2024-02-20T14:41:57Z  
dc.date.issued
2023-09  
dc.identifier.citation
Montoya, Oscar Danilo; Serra, Federico Martin; Gil González, Walter; A Robust Conic Programming Approximation to Design an EMS in Monopolar DC Networks with a High Penetration of PV Plants; MDPI; Energies; 16; 18; 9-2023; 1-17  
dc.identifier.issn
1996-1073  
dc.identifier.uri
http://hdl.handle.net/11336/227620  
dc.description.abstract
This research addresses the problem regarding the efficient operation of photovoltaic (PV) plants in monopolar direct current (DC) distribution networks from a perspective of convex optimization. PV plant operation is formulated as a nonlinear programming (NLP) problem while considering two single-objective functions: the minimization of the expected daily energy losses and the reduction in the expected CO2 emissions at the terminals of conventional generation systems. The NLP model that represents the energy management system (EMS) design is transformed into a convex optimization problem via the second-order cone equivalent of the product between two positive variables. The main contribution of this research is that it considers the uncertain nature of solar generation and expected demand curves through robust convex optimization. Numerical results in the monopolar DC version of the IEEE 33-bus grid demonstrate the effectiveness and robustness of the proposed second-order cone programming model in defining an EMS for a monopolar DC distribution network. A comparative analysis with four different combinatorial optimizers is carried out, i.e., multiverse optimization (MVO), the salp swarm algorithm (SSA), the particle swarm optimizer (PSO), and the crow search algorithm (CSA). All this is achieved while including an iterative convex method (ICM). This analysis shows that the proposed robust model can find the global optimum for two single-objective functions. The daily energy losses are reduced by 44.0082% with respect to the benchmark case, while the CO2 emissions (kg) are reduced by 27.3771%. As for the inclusion of uncertainties, during daily operation, the energy losses increase by 22.8157%, 0.2023%, and 23.7893% with respect to the benchmark case when considering demand uncertainty, PV generation uncertainty, and both. Similarly, CO2 emissions increase by 11.1854%, 0.9102%, and 12.1198% with regard to the benchmark case. All simulations were carried out using the Mosek solver in the Yalmip tool of the MATLAB software.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CARBON DIOXIDE EMISSIONS  
dc.subject
DAILY ENERGY LOSSES  
dc.subject
ENERGY MANAGEMENT SYSTEM  
dc.subject
MONOPOLAR DIRECT CURRENT NETWORKS  
dc.subject
PHOTOVOLTAIC PLANTS  
dc.subject
ROBUST CONVEX OPTIMIZATION  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Robust Conic Programming Approximation to Design an EMS in Monopolar DC Networks with a High Penetration of PV Plants  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-19T10:29:53Z  
dc.journal.volume
16  
dc.journal.number
18  
dc.journal.pagination
1-17  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Montoya, Oscar Danilo. Universidad Distrital Francisco José de Caldas; Colombia  
dc.description.fil
Fil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina  
dc.description.fil
Fil: Gil González, Walter. Universidad Tecnológica de Pereira; Colombia  
dc.journal.title
Energies  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/16/18/6470  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/en16186470