Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles

Reyes Urrutia, Ramón AndrésIcon ; Capossio, Juan PabloIcon ; Venier, César MartínIcon ; Torres, Erick DavidIcon ; Rodriguez, Rosa AnaIcon ; Mazza, German DelforIcon
Fecha de publicación: 05/2023
Editorial: MDPI
Revista: Fluids
ISSN: 2311-5521
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

The fluidization of certain biomasses used in thermal processes, such as sawdust, is particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally, predictive correlations are based on a small number of specific experiments, and sphericity is seldom included. In the present work, three models, i.e., an empirical correlation and two artificial neural networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive bibliographical survey of more than 200 datasets was conducted with complete data about densities, particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was quantitatively determined (inverse relationship) together with the average impact of the biomass fraction on Umf (direct relationship). In comparison with the empirical correlations, the results showed that both ANN models can accurately predict the Umf of the presented binary mixtures with errors lower than 25%.
Palabras clave: BINARY MIXTURES , FLUIDIZATION , NEURAL NETWORKS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.796Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227349
DOI: https://doi.org/10.3390/fluids8040128
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Articulos(PROBIEN)
Articulos de INST. DE INVESTIGACION Y DES. EN ING. DE PROCESOS, BIOTECNOLOGIA Y ENERGIAS ALTERNATIVAS
Citación
Reyes Urrutia, Ramón Andrés; Capossio, Juan Pablo; Venier, César Martín; Torres, Erick David; Rodriguez, Rosa Ana; et al.; Artificial neural network prediction of minimum fluidization velocity for mixtures of biomass and inert solid particles; MDPI; Fluids; 8; 4; 5-2023; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES