Mostrar el registro sencillo del ítem

dc.contributor.author
Saracco, Gustavo Pablo  
dc.contributor.author
Bab, Marisa Alejandra  
dc.date.available
2024-02-16T15:18:13Z  
dc.date.issued
2023-07  
dc.identifier.citation
Saracco, Gustavo Pablo; Bab, Marisa Alejandra; Monte Carlo simulation of a magnetic nanoparticles system under an external rotating magnetic field; Elsevier Science; Journal of Magnetism and Magnetic Materials; 583; 7-2023; 1-12  
dc.identifier.issn
0304-8853  
dc.identifier.uri
http://hdl.handle.net/11336/227282  
dc.description.abstract
The magnetic response of an identical magnetic nanoparticles (MNP) system to a rotating external field (RMF) is studied via Monte Carlo simulations. The field of amplitude H0 and frequency ω, was applied in the y−z plane rotating clockwise. The energy was modeled by the Stoner–Wohlfarth scheme for fixed or random orientations of the anisotropy, and is in contact with a thermal bath at a temperature T. Interparticle dipolar interactions were also considered. In the non-interacting system and for low temperature, hysteresis is observed in the z magnetization component Mz for both orientations of the anisotropy axis and only in the y component (My) for the random case. Furthermore, the loop areas were estimated, and increased with ω for all orientations and (My,Mz) components. At higher temperatures the superparamagnetic state is observed, so both the blocking temperatures TB and loop areas were estimated. The values of TB were close from the room temperature TR=300K for all components, and the areas decreased with T but they are practically not zero at TB. When dipolar interactions are included a new scenario is revealed. In the low temperature regime, the blocked state is present for both My and Mz for all anisotropy orientations, and extends beyond the interval of amplitudes H0 estimated theoretically for the model without interactions and fixed anisotropy. The loops are displaced with respect to the origin of the magnetization-external field plane. When the temperature is raised, the blocked state extends for a larger range than the model without interactions, and the loop displacement decreases with T. These behaviors could be explained by observing that the average dipolar field per particle produces an effective field – the sum of both dipolar and external field – that is asymmetric with respect to the zero field line at low temperatures, becomes half-wave symmetric at higher temperatures, so the the centered character of the loops is restored. In addition, the loop areas show a peak for all orientations of the anisotropy axes in an intermediate range of temperatures. This result can be associated with a dominance of the anisotropy induced by the dipolar field. Finally, by comparing the areas of the loops of the models with and without interactions, it was found that the non-interacting model have larger areas at low temperatures that vanish near the room temperature, unlike the areas of the model with interactions due to the extension of the blocked state.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIPOLAR INTERACTIONS  
dc.subject
MONTE CARLO SIMULATIONS  
dc.subject
ROTATING MAGNETIC FIELD  
dc.subject
THERMAL BEHAVIOR  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Monte Carlo simulation of a magnetic nanoparticles system under an external rotating magnetic field  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-14T12:43:17Z  
dc.journal.volume
583  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Saracco, Gustavo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Bab, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.journal.title
Journal of Magnetism and Magnetic Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0304885323006649  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmmm.2023.171014