Mostrar el registro sencillo del ítem

dc.contributor.author
Arroyo, Romina Melisa  
dc.date.available
2015-10-01T19:02:44Z  
dc.date.issued
2013-08  
dc.identifier.citation
Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-485  
dc.identifier.issn
0926-2245  
dc.identifier.uri
http://hdl.handle.net/11336/2271  
dc.description.abstract
In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Ricci Flow  
dc.subject
Solvmanifolds  
dc.subject
Bracket Flow  
dc.subject
Negative Curvature  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Ricci flow in a class of solvmanifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
31  
dc.journal.number
4  
dc.journal.pagination
472-485  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Differential Geometry and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513000296  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2013.04.002