Mostrar el registro sencillo del ítem

dc.contributor.author
Schmarsow, Ruth Noemí  
dc.contributor.author
Casado, Ulises Martín  
dc.contributor.author
Ceolin, Marcelo Raul  
dc.contributor.author
Zucchi, Ileana Alicia  
dc.contributor.author
Müller, Alejandro J.  
dc.contributor.author
Schroeder, Walter Fabian  
dc.date.available
2024-02-16T12:20:28Z  
dc.date.issued
2023-02  
dc.identifier.citation
Schmarsow, Ruth Noemí; Casado, Ulises Martín; Ceolin, Marcelo Raul; Zucchi, Ileana Alicia; Müller, Alejandro J.; et al.; Supramolecular Networks Obtained by Block Copolymer Self-Assembly in a Polymer Matrix: Crystallization Behavior and Its Effect on the Mechanical Response; American Chemical Society; Macromolecules; 56; 4; 2-2023; 1652-1662  
dc.identifier.issn
0024-9297  
dc.identifier.uri
http://hdl.handle.net/11336/227162  
dc.description.abstract
In recent years, there has been growing interest in the study of supramolecular networks obtained by self-assembly of amphiphilic molecules due to their responsive behavior to different external stimuli. The possibility of embedding supramolecular networks into polymer matrices opens access to a new generation of functional polymers with great potential for various applications. However, very little is known about how the dynamics of the supramolecular network is affected by diffusional and topological limitations imposed by the polymer matrix. In this work, we investigate the behavior of supramolecular networks embedded into a rubbery polymer. Crystallization-driven self-assembly of a poly(ethylene-block-ethylene oxide) (PE-b-PEO) diblock copolymer was used to generate supramolecular networks in dimethacrylate monomers, which were then photopolymerized at room temperature. PE-b-PEO self-assembles into nanoribbons with a semicrystalline PE core bordered by coronal chains of PEO, and the nanoribbons, in turn, bundle into lamellar aggregates with an average stacking period of around 45 nm. The nanoribbons are interconnected through crystalline nodes in a 3D network structure. Small-angle X-ray scattering experiments show that the polymer matrix preserves the structure of the supramolecular network and avoids its disintegration when the material is heated above the melting temperature of PE cores. Successive self-nucleation and annealing studies reveal that the polymer matrix does not influence the crystallization-melting processes of PE, which take place through the interconnected cores of the supramolecular network. In contrast, the matrix imposes strong effects of topological confinement on the crystallization of PEO, limiting the dimensions of the crystalline lamellae that can be formed. Mechanical tests show that the deformation capacity of these materials can be precisely tuned by programming the temperature within the melting range of the supramolecular network. This behavior was also characterized by shape memory cyclic tests.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Supramolecular network  
dc.subject
Responsive behavior  
dc.subject
Functional polymers  
dc.subject
Nanoribbons  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Supramolecular Networks Obtained by Block Copolymer Self-Assembly in a Polymer Matrix: Crystallization Behavior and Its Effect on the Mechanical Response  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-14T12:37:53Z  
dc.journal.volume
56  
dc.journal.number
4  
dc.journal.pagination
1652-1662  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Maryland  
dc.description.fil
Fil: Schmarsow, Ruth Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Zucchi, Ileana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Müller, Alejandro J.. Universidad del País Vasco; España. IKERBASQUE; España  
dc.description.fil
Fil: Schroeder, Walter Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.journal.title
Macromolecules  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.macromol.2c02218  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/acs.macromol.2c02218