Mostrar el registro sencillo del ítem

dc.contributor.author
Estrada, Rafael Guillermo  
dc.contributor.author
Multigner, Marta  
dc.contributor.author
Fagali, Natalia Soledad  
dc.contributor.author
Lozano, Rosa María  
dc.contributor.author
Muñoz, Marta  
dc.contributor.author
Cifuentes, Sandra Carolina  
dc.contributor.author
Torres, Belén  
dc.contributor.author
Lieblich, Marcela  
dc.date.available
2024-02-15T15:03:01Z  
dc.date.issued
2023-12  
dc.identifier.citation
Estrada, Rafael Guillermo; Multigner, Marta; Fagali, Natalia Soledad; Lozano, Rosa María; Muñoz, Marta; et al.; Metastable FeMg particles for controlling degradation rate, mechanical properties, and biocompatibility of Poly(l-lactic) acid (PLLA) for orthopedic applications; Elsevier; Heliyon; 9; 12; 12-2023; 1-14  
dc.identifier.issn
2405-8440  
dc.identifier.uri
http://hdl.handle.net/11336/227084  
dc.description.abstract
Poly(l-lactic) acid (PLLA) is commonly used in bioabsorbable medical implants, but it suffers from slow degradation rate and rapid decline in mechanical properties for orthopedic applications. To address this drawback, recent research has explored the use of Mg as a filler for PLLA, resulting in composites with improved degradation rate and cytocompatibility compared to neat PLLA. In this study, FeMg powder particles were proposed as fillers for PLLA to investigate the potential of PLLA/FeMg composites for bioabsorbable implants. Cylinder specimens of PLLA, PLLA/Fe, PLLA/Mg and PLLA/FeMg were prepared using solvent casting followed by thermo-molding. The microstructure, thermal behavior, in vitro degradation behavior in simulated body fluid, mechanical properties and cytocompatibility of these composites were examined. The results indicate that the presence of FeMg particles prevents the deterioration of the composite mechanical properties, at least up to 14 days. Once a certain amount of degradation of the composite is reached, the degradation is faster than that of PLLA. Direct cytotoxicity assays revealed that pre-osteoblast MC3T3-E1 cells successfully adhered to and proliferated on the PLLA/FeMg surface. The inclusion of a low percentage of Mg into the Fe lattice not only accelerated the degradation rate of Fe but also improved its cytocompatibility. The enhanced degradation rate, mechanical properties, and osteoconductive properties of this composite make it a promising option for temporary orthopedic biomedical devices.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DEGRADABLE COMPOSITE BIOMATERIAL  
dc.subject
FEMG  
dc.subject
MECHANICAL PROPERTIES¸ CYTOCOMPATIBILITY  
dc.subject
PLLA  
dc.subject
TEMPORARY ORTHOPEDIC DEVICES  
dc.subject.classification
Compuestos  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Biomateriales  
dc.subject.classification
Biotecnología de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Metastable FeMg particles for controlling degradation rate, mechanical properties, and biocompatibility of Poly(l-lactic) acid (PLLA) for orthopedic applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-14T12:37:31Z  
dc.journal.volume
9  
dc.journal.number
12  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Estrada, Rafael Guillermo. Consejo Superior de Investigaciones Científicas. Centro Nacional de Investigaciones Metalúrgicas; España  
dc.description.fil
Fil: Multigner, Marta. Universidad Rey Juan Carlos; España  
dc.description.fil
Fil: Fagali, Natalia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Lozano, Rosa María. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España  
dc.description.fil
Fil: Muñoz, Marta. Universidad Rey Juan Carlos; España  
dc.description.fil
Fil: Cifuentes, Sandra Carolina. Universidad Rey Juan Carlos; España  
dc.description.fil
Fil: Torres, Belén. Universidad Rey Juan Carlos; España  
dc.description.fil
Fil: Lieblich, Marcela. Consejo Superior de Investigaciones Científicas. Centro Nacional de Investigaciones Metalúrgicas; España  
dc.journal.title
Heliyon  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405844023097608  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.heliyon.2023.e22552