Mostrar el registro sencillo del ítem

dc.contributor.author
Bergero, Paula Elena  
dc.contributor.author
Schaposnik, Laura P.  
dc.contributor.author
Wang, Grace  
dc.date.available
2024-02-15T12:27:13Z  
dc.date.issued
2023-02  
dc.identifier.citation
Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-17  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/227050  
dc.description.abstract
A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
COVID-19  
dc.subject
DENGUE  
dc.subject
NEURAL NETWORK  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-14T12:49:04Z  
dc.identifier.eissn
2331-8422  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
1-17  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Schaposnik, Laura P.. University of Illinois; Estados Unidos  
dc.description.fil
Fil: Wang, Grace. Massachusetts Institute of Technology; Estados Unidos  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-27983-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1038/s41598-023-27983-9