Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Non-traditional data sources in obesity research: A systematic review of their use in the study of obesogenic environments

Wirtz Baker, Julia MarielIcon ; Pou, Sonia AlejandraIcon ; Niclis, CamilaIcon ; Haluszka, EugeniaIcon ; Aballay, Laura Rosana
Fecha de publicación: 08/2023
Editorial: Nature Publishing Group
Revista: International Journal Of Obesity
ISSN: 0307-0565
e-ISSN: 1476-5497
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Epidemiología; Salud Pública y Medioambiental

Resumen

Background: The complex nature of obesity increasingly requires a comprehensive approach that includes the role of environmental factors. For understanding contextual determinants, the resources provided by technological advances could become a key factor in obesogenic environment research. This study aims to identify different sources of non-traditional data and their applications, considering the domains of obesogenic environments: physical, sociocultural, political and economic. Methods: We conducted a systematic search in PubMed, Scopus and LILACS databases by two independent groups of reviewers, from September to December 2021. We included those studies oriented to adult obesity research using non-traditional data sources, published in the last 5 years in English, Spanish or Portuguese. The overall reporting followed the PRISMA guidelines. Results: The initial search yielded 1583 articles, 94 articles were kept for full-text screening, and 53 studies met the eligibility criteria and were included. We extracted information about countries of origin, study design, observation units, obesity-related outcomes, environment variables, and non-traditional data sources used. Our results revealed that most of the studies originated from high-income countries (86.54%) and used geospatial data within a GIS (76.67%), social networks (16.67%), and digital devices (11.66%) as data sources. Geospatial data were the most utilised data source and mainly contributed to the study of the physical domains of obesogenic environments, followed by social networks providing data to the analysis of the sociocultural domain. A gap in the literature exploring the political domain of environments was also evident. Conclusion: The disparities between countries are noticeable. Geospatial and social network data sources contributed to studying the physical and sociocultural environments, which could be a valuable complement to those traditionally used in obesity research. We propose the use of information available on the Internet, addressed by artificial intelligence-based tools, to increase the knowledge on political and economic dimensions of the obesogenic environment.
Palabras clave: OVERWEIGHT , ENVIRONMENT , BIG DATA , INFORMATION SOURCES
Ver el registro completo
 
Archivos asociados
Tamaño: 841.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227031
URL: https://www.nature.com/articles/s41366-023-01331-3
DOI: https://doi.org/10.1038/s41366-023-01331-3
Colecciones
Articulos(INICSA)
Articulos de INSTITUTO DE INVESTIGACIONES EN CIENCIAS DE LA SALUD
Citación
Wirtz Baker, Julia Mariel; Pou, Sonia Alejandra; Niclis, Camila; Haluszka, Eugenia; Aballay, Laura Rosana; Non-traditional data sources in obesity research: A systematic review of their use in the study of obesogenic environments; Nature Publishing Group; International Journal Of Obesity; 47; 8; 8-2023; 686-696
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES