Mostrar el registro sencillo del ítem

dc.contributor.author
Badin, Emiliano Emanuel  
dc.contributor.author
Esteves Duarte Augusto, Pedro  
dc.contributor.author
Quevedo Leon, Roberto Agustín  
dc.contributor.author
Ibarz, Albert  
dc.contributor.author
Ribotta, Pablo Daniel  
dc.contributor.author
Lespinard, Alejandro Rafael  
dc.date.available
2024-02-15T12:15:50Z  
dc.date.issued
2023-01  
dc.identifier.citation
Badin, Emiliano Emanuel; Esteves Duarte Augusto, Pedro ; Quevedo Leon, Roberto Agustín; Ibarz, Albert; Ribotta, Pablo Daniel; et al.; Raspberry pulp pasteurization: Computational fluid dynamics modeling and experimental validation of color and bioactive compound retention; Wiley Blackwell Publishing, Inc; Journal Of Food Process Engineering; 46; 1; 1-2023; 1-16  
dc.identifier.issn
0145-8876  
dc.identifier.uri
http://hdl.handle.net/11336/227028  
dc.description.abstract
This work evaluated the heat transfer, fluid flow, and different reactions that occur during the pasteurization of raspberry pulp. The pulp was packed in glass jars and thermal processing was conducted by immersion in a water bath. The process was evaluated by multiphysics modeling, with the aim of determining the temperature distribution, flow pattern, the slowest heating zone (SHZ) location, the microbial inactivation, and the quality changes taking place during processing. In order to simulate the process accurately, a model was developed using experimentally measured product and heat transfer properties (density, thermal expansion, specific heat, thermal conductivity, apparent viscosity, and convective heat transfer coefficient) and kinetics of thermal degradation of quality parameters (color, anthocyanin, and ascorbic acid). The model was successfully validated against experimental measurements of both temperature and quality losses. After validation, the model was used to design and evaluate equivalent thermal processing conditions. Improved processes were identified that minimized the changes of color and the bioactive compounds, while maintaining product safety and stability. Practical Applications: Thermal processing of raspberries may induce several physicochemical changes that impair their sensorial properties, and may reduce the content of nutrients and bioactive compounds. Hence, the design and optimization of heat treatments is a key tool to guarantee safety while, at the same time, minimizing detrimental side effects which involve a loss of quality. In this investigation, we assessed the actual thermo-physical properties of raspberry pulp and the system heat transfer coefficients. Then, we developed a CFD model to predict the temperature and velocity transient profiles, the location of the SHZ, and the quality changes occurring in raspberry pulp during pasteurization. The findings of this study could be useful to food processors for optimizing pasteurization conditions in order to obtain safe and high-quality raspberry pulp preserves, as well as for reducing processing energy requirements.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FINITE ELEMENT ANALYSIS  
dc.subject
FLUID FLOW  
dc.subject
FOOD QUALITY  
dc.subject
REACTION KINETICS  
dc.subject
TEMPERATURE DISTRIBUTION  
dc.subject
THERMAL PROCESSING  
dc.subject.classification
Alimentos y Bebidas  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Raspberry pulp pasteurization: Computational fluid dynamics modeling and experimental validation of color and bioactive compound retention  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-14T11:37:34Z  
dc.identifier.eissn
1745-4530  
dc.journal.volume
46  
dc.journal.number
1  
dc.journal.pagination
1-16  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Badin, Emiliano Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica - Universidad Nacional de Villa María. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica; Argentina. Universidad Nacional de Villa María. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas; Argentina  
dc.description.fil
Fil: Esteves Duarte Augusto, Pedro. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Quevedo Leon, Roberto Agustín. Universidad de Los Lagos; Chile  
dc.description.fil
Fil: Ibarz, Albert. Universidad de Lleida; España  
dc.description.fil
Fil: Ribotta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina  
dc.description.fil
Fil: Lespinard, Alejandro Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica - Universidad Nacional de Villa María. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica; Argentina. Universidad Nacional de Villa María. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas; Argentina  
dc.journal.title
Journal Of Food Process Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.14168  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/jfpe.14168