Artículo
Exploring the Differential Impact of Salt Stress on Root Colonization Adaptation Mechanisms in Plant Growth-Promoting Rhizobacteria
Cappellari, Lorena del Rosario
; Bogino, Pablo Cesar
; Nievas, Fiorela Lujan
; Giordano, Walter Fabian
; Banchio, Erika
Fecha de publicación:
12/2023
Editorial:
Multidisciplinary Digital Publishing Institute
Revista:
Plants
e-ISSN:
2223-7747
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Salinity inhibits plant growth by affecting physiological processes, but soil microorganisms like plant growth-promoting rhizobacteria (PGPR) can alleviate abiotic stress and enhance crop productivity. However, it should be noted that rhizobacteria employ different approaches to deal with salt stress conditions and successfully colonize roots. The objective of this study was to investigate the effect of salt stress on bacterial survival mechanisms such as mobility, biofilm formation, and the autoaggregation capacity of three plant growth-promoting strains: Pseudomonas putida SJ04, Pseudomonas simiae WCS417r, and Bacillus amyloliquefaciens GB03. These strains were grown in diluted LB medium supplemented with 0, 100, 200, or 300 mM NaCl. Swimming and swarming mobility were evaluated in media supplemented with 0.3 and 0.5% agar, respectively. Biofilm formation capacity was quantified using the crystal violet method, and the autoaggregation capacity was measured spectrophotometrically. In addition, we evaluated in vitro the capacity of the strains to ameliorate the effects of saline stress in Mentha piperita. The study found that the GB03 strain exhibited enhanced swarming mobility when the salt concentration in the medium increased, resulting in a two-fold increase in the halo diameter at 300 mM. However, high concentrations of NaCl did not affect the swimming mobility. In contrast, swimming motility was reduced in WCS417r and SJ04 under salt stress. On the other hand, exposure to 300 mM NaCl resulted in a 180% increase in biofilm formation and a 30% rise in the percentage of autoaggregation in WCS417r. Conversely, the autoaggregation percentage of the strains SJ04 and GB03 remained unaffected by saline stress. However, for GB03, biofilm formation decreased by 80% at 300 mM. Simultaneously, inoculation with the three evaluated strains alleviated the detrimental effects of salinity on plant growth. Under 150 mM salt stress, all strains showed increased fresh weight, with GB03 and WCS417r improving by 40% and SJ04 exhibiting the most remarkable effect with a 70% rise compared to non-inoculated plants. Despite their different strategies for mitigating salt stress, the application of these strains presents a promising strategy for effectively mitigating the negative consequences of salt stress on plant cultivation.
Palabras clave:
AUTOAGGREGATION CAPACITY
,
BIOFILM
,
MENTHA PIPERITA
,
MOTILITY
,
PGPR
,
SALT STRESS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (INBIAS)
Articulos de INSTITUTO DE BIOTECNOLOGIA AMBIENTAL Y SALUD
Articulos de INSTITUTO DE BIOTECNOLOGIA AMBIENTAL Y SALUD
Citación
Cappellari, Lorena del Rosario; Bogino, Pablo Cesar; Nievas, Fiorela Lujan; Giordano, Walter Fabian; Banchio, Erika; Exploring the Differential Impact of Salt Stress on Root Colonization Adaptation Mechanisms in Plant Growth-Promoting Rhizobacteria; Multidisciplinary Digital Publishing Institute; Plants; 12; 23; 12-2023; 1-16
Compartir
Altmétricas