Mostrar el registro sencillo del ítem

dc.contributor.author
Lavorato, Gabriel Carlos  
dc.contributor.author
de Almeida, Adriele Aparecida  
dc.contributor.author
Vericat, Carolina  
dc.contributor.author
Fonticelli, Mariano Hernan  
dc.date.available
2024-02-15T11:02:54Z  
dc.date.issued
2023-02  
dc.identifier.citation
Lavorato, Gabriel Carlos; de Almeida, Adriele Aparecida; Vericat, Carolina; Fonticelli, Mariano Hernan; Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications; IOP Publishing; Nanotechnology; 34; 19; 2-2023; 192001-192028  
dc.identifier.issn
0957-4484  
dc.identifier.uri
http://hdl.handle.net/11336/226941  
dc.description.abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOMEDICAL APPLICATIONS  
dc.subject
CATION DIFFUSION MECHANISMS  
dc.subject
IRON OXIDES PHASE TRANSFORMATIONS  
dc.subject
MAGHEMITE NANOPARTICLES  
dc.subject
MAGNETITE NANOPARTICLES  
dc.subject
MAGNETITE TOPOTACTIC OXIDATION  
dc.subject
WÜSTITE NANOPARTICLES  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-14T12:33:27Z  
dc.journal.volume
34  
dc.journal.number
19  
dc.journal.pagination
192001-192028  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Lavorato, Gabriel Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: de Almeida, Adriele Aparecida. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Vericat, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Fonticelli, Mariano Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.journal.title
Nanotechnology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6528/acb943  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-6528/acb943