Mostrar el registro sencillo del ítem
dc.contributor.author
Dickenstein, Alicia Marcela
dc.contributor.author
Di Rocco, Sandra
dc.contributor.author
Morrison, Ralph
dc.date.available
2024-02-14T14:05:26Z
dc.date.issued
2023-05
dc.identifier.citation
Dickenstein, Alicia Marcela; Di Rocco, Sandra; Morrison, Ralph; Iterated and mixed discriminants; European Mathematical Society Publishing House; Journal of Combinatorial Algebra; 7; 1/2; 5-2023; 45-81
dc.identifier.issn
2415-6302
dc.identifier.uri
http://hdl.handle.net/11336/226860
dc.description.abstract
Classical work by Salmon and Bromwich classified singular intersections of two quadric surfaces. The basic idea of these results was already pursued by Cayley in connection with tangent intersections of conics in the plane and used by Schäfli for the study of hyperdeterminants. More recently, the problem has been revisited with similar tools in the context of geometric modeling and a generalization to the case of two higher dimensional quadric hypersurfaces was given by Ottaviani. We propose and study a generalization of this question for systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Schäfli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre–Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
European Mathematical Society Publishing House
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ITERATED DISCRIMINANT
dc.subject
MIXED DISCRIMINANT
dc.subject
DUAL VARIETY
dc.subject
SEGRE-VERONESE VARIETIES
dc.subject
POLYNOMIAL SYSTEMS
dc.subject
DISCRIMINANTS
dc.subject
ALGEBRAIC VARIETIES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Iterated and mixed discriminants
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-02T15:09:38Z
dc.identifier.eissn
2415-6310
dc.journal.volume
7
dc.journal.number
1/2
dc.journal.pagination
45-81
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Di Rocco, Sandra. KTH Royal Institute of Technology; Suecia
dc.description.fil
Fil: Morrison, Ralph. Williams College; Estados Unidos
dc.journal.title
Journal of Combinatorial Algebra
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/JCA/68
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jca/articles/10649044
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2101.11571#:~:text=We%20consider%20systems%20of%20Laurent,polynomial%20called%20the%20mixed%20discriminant
Archivos asociados