Mostrar el registro sencillo del ítem

dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Di Rocco, Sandra  
dc.contributor.author
Morrison, Ralph  
dc.date.available
2024-02-14T14:05:26Z  
dc.date.issued
2023-05  
dc.identifier.citation
Dickenstein, Alicia Marcela; Di Rocco, Sandra; Morrison, Ralph; Iterated and mixed discriminants; European Mathematical Society Publishing House; Journal of Combinatorial Algebra; 7; 1/2; 5-2023; 45-81  
dc.identifier.issn
2415-6302  
dc.identifier.uri
http://hdl.handle.net/11336/226860  
dc.description.abstract
Classical work by Salmon and Bromwich classified singular intersections of two quadric surfaces. The basic idea of these results was already pursued by Cayley in connection with tangent intersections of conics in the plane and used by Schäfli for the study of hyperdeterminants. More recently, the problem has been revisited with similar tools in the context of geometric modeling and a generalization to the case of two higher dimensional quadric hypersurfaces was given by Ottaviani. We propose and study a generalization of this question for systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Schäfli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre–Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society Publishing House  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ITERATED DISCRIMINANT  
dc.subject
MIXED DISCRIMINANT  
dc.subject
DUAL VARIETY  
dc.subject
SEGRE-VERONESE VARIETIES  
dc.subject
POLYNOMIAL SYSTEMS  
dc.subject
DISCRIMINANTS  
dc.subject
ALGEBRAIC VARIETIES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Iterated and mixed discriminants  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-02T15:09:38Z  
dc.identifier.eissn
2415-6310  
dc.journal.volume
7  
dc.journal.number
1/2  
dc.journal.pagination
45-81  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Di Rocco, Sandra. KTH Royal Institute of Technology; Suecia  
dc.description.fil
Fil: Morrison, Ralph. Williams College; Estados Unidos  
dc.journal.title
Journal of Combinatorial Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/JCA/68  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jca/articles/10649044  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2101.11571#:~:text=We%20consider%20systems%20of%20Laurent,polynomial%20called%20the%20mixed%20discriminant