Mostrar el registro sencillo del ítem

dc.contributor.author
Straccia Cepeda, Vianni Giovanna  
dc.contributor.author
Lugo Garcia, Pedro Luis  
dc.contributor.author
Rivela Fretes, Cynthia Beatriz  
dc.contributor.author
Blanco, Maria Belen  
dc.contributor.author
Teruel, Mariano Andres  
dc.date.available
2024-02-14T11:46:37Z  
dc.date.issued
2023-09  
dc.identifier.citation
Straccia Cepeda, Vianni Giovanna; Lugo Garcia, Pedro Luis; Rivela Fretes, Cynthia Beatriz; Blanco, Maria Belen; Teruel, Mariano Andres; Atmospheric degradation of chloroacetoacetates by Cl atoms: Reactivity, products and mechanism in coastal and industrialized areas; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 309; 119925; 9-2023; 1-11  
dc.identifier.issn
1352-2310  
dc.identifier.uri
http://hdl.handle.net/11336/226740  
dc.description.abstract
Kinetic studies of the reaction of Cl atoms with ethyl 2-chloroacetoacetate, CH3C(O)CHClC(O)OCH2CH3, (k1) and methyl 2-chloroacetoacetate, CH3C(O)CHClC(O)OCH3, (k2) have been developed for the first time using SPME/GC-FID and in situ FTIR spectroscopy at (298 ± 2) K and 1000 mbar in glass atmospheric chambers. Relative rate coefficients obtained by Fourier Transform Infrared Spectroscopy (FTIR) using different reference compounds, were the following (in cm3.molecule−1.s−1): kE2CAA-FTIR= (2.41 ± 0.57) × 10−10 and kM2CAA-FTIR= (2.16 ± 0.85) × 10−10. Similar and reproducible values were obtained using Gas Chromatography equipped with Flame Ionization Detection coupled with Solid Phase Micro Extraction (SPME), kE2CAA-GC-FID = (2.54 ± 0.81) × 10−10 and kM2CAA-GC-FID = (2.34 ± 0.87) × 10−10 all values in units of cm3.molecule−1.s−1. In addition, product studies were performed in similar conditions to the kinetic experiments to identify the reaction products and postulate their tropospheric degradation mechanisms. The reaction of Cl atoms with saturated esters initiates via H-atom abstraction from the alkyl groups of the molecule. Formyl chloride, chloroacetone, and acetyl chloride were positively identified as reaction products by FTIR. On the other hand, acetyl chloride, 1,1,1-trichloropropan-2-one, 1,1-dichloropropan-2-one, 1-chloropropan-2-one, ethyl chloroformate, and methyl chloroformate were identified by the GC-MS technique. Structure–Activity Relationship (SAR), calculations were also performed to estimate the more favorable reactions pathways in agreement with the products observed. The atmospheric implications of these reactions were assessed by the estimation of the residence times of the chloroesters studied as following: τCl-E2CAA = 1.47 days, and τCl-M2CAA = 1.57 days. Additionally, the possible impact of the emission of chloro acetoacetates in rain acidification was evaluated from the moderate Acidification Potentials (AP), 0.19, and 0.21 obtained for E2CAA and M2CAA, respectively.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ACIDIFICATION POTENTIALS  
dc.subject
CHLOROESTERS  
dc.subject
KINETICS  
dc.subject
OXIDATION MECHANISM  
dc.subject
SARS  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Atmospheric degradation of chloroacetoacetates by Cl atoms: Reactivity, products and mechanism in coastal and industrialized areas  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-06T13:38:04Z  
dc.journal.volume
309  
dc.journal.number
119925  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Straccia Cepeda, Vianni Giovanna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Lugo Garcia, Pedro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Rivela Fretes, Cynthia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Blanco, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Teruel, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.journal.title
Atmospheric Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231023003515  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.atmosenv.2023.119925