Mostrar el registro sencillo del ítem
dc.contributor.author
Maya, Juan Augusto
dc.contributor.author
Rey Vega, Leonardo Javier
dc.contributor.author
Tonello, Andrea M.
dc.date.available
2024-02-09T15:42:07Z
dc.date.issued
2023-12
dc.identifier.citation
Maya, Juan Augusto; Rey Vega, Leonardo Javier; Tonello, Andrea M.; An Asymptotically Equivalent GLRT Test for Distributed Detection in Wireless Sensor Networks; Institute of Electrical and Electronics Engineers; IEEE Transactions on Signal and Information Processing over Networks; 9; 12-2023; 888-900
dc.identifier.issn
2373-776X
dc.identifier.uri
http://hdl.handle.net/11336/226671
dc.description.abstract
In this article, we tackle the problem of distributed detection of a radio source emitting a signal. We consider that geographically distributed sensor nodes obtain energy measurements and compute cooperatively a statistic to decide if the source is present or absent. We model the radio source as a stochastic signal and work with spatially statistically dependent measurements. We consider the Generalized Likelihood Ratio Test (GLRT) approach to deal with an unknown multidimensional parameter from the model. We analytically characterize the asymptotic distribution of the statistic when the amount of sensor measurements tends to infinity. Moreover, as the GLRT is not amenable for distributed settings because of the spatial statistical dependence of the measurements, we study a GLRT-like test where the statistical dependence is completely discarded for building this test. Nevertheless, its asymptotic performance is proved to be identical to the original GLRT, showing that the statistical dependence of the measurements has no impact on the detection performance in the asymptotic scenario. Furthermore, the GLRT-like algorithm has a low computational complexity and demands low communication resources, as compared to the GLRT.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ASYMPTOTIC PERFORMANCE
dc.subject
COMPOSITE DISTRIBUTED TEST
dc.subject
COOPERATIVE DETECTION
dc.subject
SPECTRUM SENSING
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
An Asymptotically Equivalent GLRT Test for Distributed Detection in Wireless Sensor Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-09T14:43:06Z
dc.journal.volume
9
dc.journal.pagination
888-900
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. University of Klagenfurt; Austria
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.description.fil
Fil: Tonello, Andrea M.. University of Klagenfurt; Austria
dc.journal.title
IEEE Transactions on Signal and Information Processing over Networks
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSIPN.2023.3341407
Archivos asociados