Mostrar el registro sencillo del ítem

dc.contributor.author
Maya, Juan Augusto  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.contributor.author
Tonello, Andrea M.  
dc.date.available
2024-02-09T15:42:07Z  
dc.date.issued
2023-12  
dc.identifier.citation
Maya, Juan Augusto; Rey Vega, Leonardo Javier; Tonello, Andrea M.; An Asymptotically Equivalent GLRT Test for Distributed Detection in Wireless Sensor Networks; Institute of Electrical and Electronics Engineers; IEEE Transactions on Signal and Information Processing over Networks; 9; 12-2023; 888-900  
dc.identifier.issn
2373-776X  
dc.identifier.uri
http://hdl.handle.net/11336/226671  
dc.description.abstract
In this article, we tackle the problem of distributed detection of a radio source emitting a signal. We consider that geographically distributed sensor nodes obtain energy measurements and compute cooperatively a statistic to decide if the source is present or absent. We model the radio source as a stochastic signal and work with spatially statistically dependent measurements. We consider the Generalized Likelihood Ratio Test (GLRT) approach to deal with an unknown multidimensional parameter from the model. We analytically characterize the asymptotic distribution of the statistic when the amount of sensor measurements tends to infinity. Moreover, as the GLRT is not amenable for distributed settings because of the spatial statistical dependence of the measurements, we study a GLRT-like test where the statistical dependence is completely discarded for building this test. Nevertheless, its asymptotic performance is proved to be identical to the original GLRT, showing that the statistical dependence of the measurements has no impact on the detection performance in the asymptotic scenario. Furthermore, the GLRT-like algorithm has a low computational complexity and demands low communication resources, as compared to the GLRT.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ASYMPTOTIC PERFORMANCE  
dc.subject
COMPOSITE DISTRIBUTED TEST  
dc.subject
COOPERATIVE DETECTION  
dc.subject
SPECTRUM SENSING  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An Asymptotically Equivalent GLRT Test for Distributed Detection in Wireless Sensor Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-09T14:43:06Z  
dc.journal.volume
9  
dc.journal.pagination
888-900  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. University of Klagenfurt; Austria  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Tonello, Andrea M.. University of Klagenfurt; Austria  
dc.journal.title
IEEE Transactions on Signal and Information Processing over Networks  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSIPN.2023.3341407