Mostrar el registro sencillo del ítem
dc.contributor.author
Silveira, Eduarda
dc.contributor.author
Radeloff, Volker
dc.contributor.author
Martinuzzi, Sebastián
dc.contributor.author
Martínez Pastur, Guillermo José
dc.contributor.author
Bono, Julieta
dc.contributor.author
Politi, Natalia
dc.contributor.author
Lizárraga, Roberto Leonidas
dc.contributor.author
Rivera, Luis Osvaldo
dc.contributor.author
Ciuffoli, Lucía
dc.contributor.author
Rosas, Yamina Micaela
dc.contributor.author
Olah, Ashley M.
dc.contributor.author
Gavier Pizarro, Gregorio
dc.contributor.author
Pidgeon, Anna Michle
dc.date.available
2024-02-09T15:24:50Z
dc.date.issued
2023-02
dc.identifier.citation
Silveira, Eduarda; Radeloff, Volker; Martinuzzi, Sebastián; Martínez Pastur, Guillermo José; Bono, Julieta; et al.; Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery; Elsevier Science Inc.; Remote Sensing of Environment; 285; 2-2023; 1-17
dc.identifier.issn
0034-4257
dc.identifier.uri
http://hdl.handle.net/11336/226659
dc.description.abstract
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
BASAL AREA
dc.subject
CANOPY COVER
dc.subject
DBH
dc.subject
DHIS
dc.subject
DOMINANT HEIGHT
dc.subject
EVI
dc.subject
MEAN HEIGHT
dc.subject
OPTICAL
dc.subject
RADAR
dc.subject
VH POLARIZATION
dc.subject
VOLUME
dc.subject
VV POLARIZATION
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-09T10:53:51Z
dc.journal.volume
285
dc.journal.pagination
1-17
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Silveira, Eduarda. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Radeloff, Volker. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Martinuzzi, Sebastián. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
dc.description.fil
Fil: Bono, Julieta. Administración de Parques Nacionales; Argentina
dc.description.fil
Fil: Politi, Natalia. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
dc.description.fil
Fil: Lizárraga, Roberto Leonidas. Administración de Parques Nacionales; Argentina
dc.description.fil
Fil: Rivera, Luis Osvaldo. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
dc.description.fil
Fil: Ciuffoli, Lucía. Administración de Parques Nacionales; Argentina
dc.description.fil
Fil: Rosas, Yamina Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
dc.description.fil
Fil: Olah, Ashley M.. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Gavier Pizarro, Gregorio. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pidgeon, Anna Michle. University of Wisconsin; Estados Unidos
dc.journal.title
Remote Sensing of Environment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034425722004977
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.rse.2022.113391
Archivos asociados