Mostrar el registro sencillo del ítem

dc.contributor.author
Ayres, Lucas  
dc.contributor.author
Benavidez, Tomás Enrique  
dc.contributor.author
Varillas, Armelle  
dc.contributor.author
Linton, Jeb  
dc.contributor.author
Whitehead, Daniel C.  
dc.contributor.author
Garcia, Carlos D.  
dc.date.available
2024-02-09T13:54:32Z  
dc.date.issued
2023-10  
dc.identifier.citation
Ayres, Lucas; Benavidez, Tomás Enrique; Varillas, Armelle; Linton, Jeb; Whitehead, Daniel C.; et al.; Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data; American Chemical Society; Journal of Agricultural and Food Chemistry; 71; 42; 10-2023; 15644-15655  
dc.identifier.issn
0021-8561  
dc.identifier.uri
http://hdl.handle.net/11336/226612  
dc.description.abstract
Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components, leading to the formation of low molecular weight species with diverse functional groups that impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these products, often deployed as combinations of two or more compounds, a strategy that allows for lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have been predominantly empirically driven but thus far, inefficient and unable to account for the complexity and multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the use of an artificial intelligence model based on deep learning architecture to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated with a combination index value (CI) and used as input for our model, which was challenged against a test (n = 140) data set. Despite the encouraging preliminary results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the AI algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the importance of having chemically relevant experimental data to enhance the model’s performance and provide suitable predictions with statistical relevance. We believe the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the behavior of antioxidant mixtures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANTIOXIDANT  
dc.subject
LIPID OXIDATION  
dc.subject
MACHINE LEARNING  
dc.subject
SYNERGISM  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-09T12:17:13Z  
dc.journal.volume
71  
dc.journal.number
42  
dc.journal.pagination
15644-15655  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Ayres, Lucas. Clemson University; Estados Unidos  
dc.description.fil
Fil: Benavidez, Tomás Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina  
dc.description.fil
Fil: Varillas, Armelle. South Carolina Governor’s School for Science and Mathematics; Estados Unidos  
dc.description.fil
Fil: Linton, Jeb. Clemson University; Estados Unidos  
dc.description.fil
Fil: Whitehead, Daniel C.. Clemson University; Estados Unidos  
dc.description.fil
Fil: Garcia, Carlos D.. Clemson University; Estados Unidos. South Carolina Governor’s School for Science and Mathematics; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina  
dc.journal.title
Journal of Agricultural and Food Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jafc.3c05462  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jafc.3c05462