Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Influence of Climatic Variables on Incidence of Whitefly-Transmitted Begomovirus in Soybean and Bean Crops in North-Western Argentina

Reyna, Pablo GastónIcon ; Suarez, Franco MarceloIcon ; Balzarini, Monica GracielaIcon ; Rodríguez-Pardina, Patricia Elsa
Fecha de publicación: 02/2023
Editorial: MDPI
Revista: Viruses
ISSN: 1999-4915
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agronomía, reproducción y protección de plantas

Resumen

Over the last 20 years, begomoviruses have emerged as devastating pathogens, limiting the production of different crops worldwide. Weather conditions increase vector populations, with negative effects on crop production. In this work we evaluate the relationship between the incidence of begomovirus and weather before and during the crop cycle. Soybean and bean fields from north-western (NW) Argentina were monitored between 2001 and 2018 and classified as moderate (≤50%) or severe (>50%) according to the begomovirus incidence. Bean golden mosaic virus (BGMV) and soybean blistering mosaic virus (SbBMV) were the predominant begomovirus in bean and soybean crops, respectively. Nearly 200 bio-meteorological variables were constructed by summarizing climatic variables in 10-day periods from July to November of each crop year. The studied variables included temperature, precipitation, relative humidity, wind (speed and direction), pressure, cloudiness, and visibility. For bean, high maximum winter temperatures, low spring humidity, and precipitation 10 days before planting correlated with severe incidence. In soybeans, high temperatures in late winter and in the pre-sowing period, and low spring precipitations were found to be good predictors of high incidence of begomovirus. The results suggest that temperature and pre-sowing precipitations can be used to predict the incidence status [predictive accuracy: 80% (bean) and 75% (soybean)]. Thus, these variables can be incorporated in early warning systems for crop management decision-making to reduce the virus impact on bean and soybean crops.
Palabras clave: PATHOSYSTEM , PREDICTIVE MODEL , VIRAL DISEASES , WEATHER
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.197Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/226567
URL: https://www.mdpi.com/1999-4915/15/2/462
DOI: http://dx.doi.org/10.3390/v15020462
Colecciones
Articulos (UFYMA)
Articulos de UNIDAD DE FITOPATOLOGIA Y MODELIZACION AGRICOLA
Citación
Reyna, Pablo Gastón; Suarez, Franco Marcelo; Balzarini, Monica Graciela; Rodríguez-Pardina, Patricia Elsa; Influence of Climatic Variables on Incidence of Whitefly-Transmitted Begomovirus in Soybean and Bean Crops in North-Western Argentina; MDPI; Viruses; 15; 2; 2-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES