Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploring Scoring Function Space. Developing Computational Models for Drug Discovery

Bitencourt Ferreira, Gabriela; Villarreal, Marcos ArielIcon ; Quiroga, RodrigoIcon ; Kulikova, Nadezhda; Poroikov, Vladimir; Tarasova, Olga; Filgueira de Azevedo Junior, Walter
Fecha de publicación: 02/2023
Editorial: Bentham Science Publishers
Revista: Current Medicinal Chemistry
ISSN: 0929-8673
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática; Bioquímica y Biología Molecular

Resumen

Background: The idea of scoring function space established a systems-level approach toaddress the development of models to predict binding affinity faced by those interested in drugdiscovery.Objective: Our goal here is to review the concept of scoring function space and how to explore it todevelop machine learning models to address protein-ligand binding affinity.Method: We searched the articles available in PubMed about the scoring function space. We alsoutilized crystallographic structures found in the protein data bank (PDB). We used datasets available atthe PDBbind, BindingDB, and Binding MOAD to illustrate how to integrate structural and binding data.Results: The application of systems-level approaches to address receptor-drug interactions allows us tohave a holistic view of the process of drug discovery. The scoring function space added flexibility tothe process since it makes it possible to see the drug discovery as a relationship involving mathematicalspaces.Conclusion: The application of the concept of scoring function space gave us an integrated view ofdrug discovery methods. This concept is useful to support the application of methods used for drugdiscovery, where we see the process as a computational search of the chemical space using itsrelationships with the protein and scoring function spaces as a guide to finding new models to expressreceptor-drug binding affinity.
Palabras clave: SCORING FUNCTION SPACE , SYSTEMS BIOLOGY , CHEMICAL SPACE , DRUG DISCOVERY
Ver el registro completo
 
Archivos asociados
Tamaño: 479.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/226554
URL: https://www.eurekaselect.com/article/130284
DOI: https://doi.org/10.2174/0929867330666230321103731
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Bitencourt Ferreira, Gabriela ; Villarreal, Marcos Ariel; Quiroga, Rodrigo; Kulikova, Nadezhda; Poroikov, Vladimir ; et al.; Exploring Scoring Function Space. Developing Computational Models for Drug Discovery; Bentham Science Publishers; Current Medicinal Chemistry; 2-2023; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES