Artículo
On the equation x2 + dy6 = zp for square-free 1 ≤ d ≤ 20
Fecha de publicación:
02/2023
Editorial:
World Scientific
Revista:
International Journal Of Number Theory
ISSN:
1793-0421
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The purpose of this paper is to show how the modular method together with different techniques can be used to prove non-existence of primitive non-trivial solutions of the equation x2 + dy6 = zp for square-free values 1 ≤ d ≤ 20. The key ingredients are: the approach presented in [A. Pacetti and L. V. Torcomian, Q-curves, Hecke characters and some Diophantine equations, Math. Comp. 91(338) (2022) 2817–2865] (in particular its recipe for the space of modular forms to be computed) together with the use of the symplectic method (as developed in [E. Halberstadt and A. Kraus, Courbes de Fermat: Résultats et problèmes, J. Reine Angew. Math. 548 (2002) 167–234], although we give a variant over ramified extensions needed in our applications) to discard solutions and the use of a second Frey curve, aiming to prove large image of residual Galois representations.
Palabras clave:
DIOPHANTINE EQUATIONS
,
Q-CURVES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Golfieri Madriaga, Franco Anibal; Pacetti, Ariel Martín; Villagra Torcomian, Lucas; On the equation x2 + dy6 = zp for square-free 1 ≤ d ≤ 20; World Scientific; International Journal Of Number Theory; 19; 5; 2-2023; 1129-1165
Compartir
Altmétricas