Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Novel evaluation approach for molecular signature-based deconvolution methods

Nava, AgustínIcon ; Alves Da Quinta, Daniela BelénIcon ; Prato, Laura; Girotti, María Romina; Moron, Victor GabrielIcon ; Llera, Andrea SabinaIcon ; Fernandez, Elmer AndresIcon
Fecha de publicación: 05/2023
Editorial: Academic Press Inc Elsevier Science
Revista: Journal Of Biomedical Informatics
ISSN: 1532-0464
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oncología; Ciencias de la Información y Bioinformática; Inmunología

Resumen

The tumoral immune microenvironment (TIME) plays a key role in prognosis, therapeutic approach and pathophysiological understanding over oncological processes. Several computational immune cell-type deconvolution methods (DM), supported by diverse molecular signatures (MS), have been developed to uncover such TIME interplay from RNA-seq tumor biopsies. MS-DM pairs were benchmarked against each other by means of different metrics, such as Pearson's correlation, R2 and RMSE, but these only evaluate the linear association of the estimated proportion related to the expected one, missing the analysis of prediction-dependent bias trends and cell identification accuracy. We present a novel protocol composed of four tests allowing appropriate evaluation of the cell type identification performance and proportion prediction accuracy of molecular signature-deconvolution method pair by means of certainty and confidence cell-type identification scores (F1-score, distance to the optimal point and error rates) as well the Bland-Altman method for error-trend analysis. Our protocol was used to benchmark six state-of-the-art DMs (CIBERSORTx, DCQ, DeconRNASeq, EPIC, MIXTURE and quanTIseq) paired to five murine tissue-specific MSs, revealing a systematic overestimation of the number of different cell types across almost all methods.
Palabras clave: DIGITAL CYTOMETRY , IMMUNO-ONCOLOGY , PERFORMANCE EVALUATION , RNA-SEQUENCING , TUMORAL IMMUNE MICRO-ENVIRONMENT
Ver el registro completo
 
Archivos asociados
Tamaño: 3.078Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/226362
URL: https://linkinghub.elsevier.com/retrieve/pii/S1532046423001089
DOI: http://dx.doi.org/10.1016/j.jbi.2023.104387
Colecciones
Articulos(CIBICI)
Articulos de CENTRO DE INV.EN BIOQUI.CLINICA E INMUNOLOGIA
Citación
Nava, Agustín; Alves Da Quinta, Daniela Belén; Prato, Laura; Girotti, María Romina; Moron, Victor Gabriel; et al.; Novel evaluation approach for molecular signature-based deconvolution methods; Academic Press Inc Elsevier Science; Journal Of Biomedical Informatics; 142; 5-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES