Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using segment-based features of jaw movements to recognise foraging activities in grazing cattle

Chelotti, Jose OmarIcon ; Vanrell, Sebastián RodrigoIcon ; Martínez Rau, Luciano SebastiánIcon ; Galli, Julio Ricardo; Utsumi, Santiago A.; Planisich, Alejandra M.; Almirón, Suyai A.; Milone, Diego HumbertoIcon ; Giovanini, Leonardo LuisIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 05/2023
Editorial: Academic Press Inc Elsevier Science
Revista: Biosystems Engineering
ISSN: 1537-5110
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Precision livestock farming optimises livestock production through the use of sensor information and communication technologies to support decision making in real-time. Among available technologies to monitor foraging behaviour, the acoustic method has been highly reliable and repeatable, but there is a room for further computational improvements to increase precision and specificity of recognition of foraging activities. In this study, an algorithm called Jaw Movement segment-based Foraging Activity Recogniser (JMFAR) is proposed. The method is based on the computation and analysis of temporal, statistical and spectral features of jaw movement sounds for detection of rumination and grazing bouts. They are called JM-segment features because they are extracted from a sound segment and expect to capture JM information of the whole segment rather than individual JMs. Additionally, two variants of the method are proposed and tested: (i) one considering the temporal and statistical features only (JMFAR-ns); and (ii) another considering a feature selection process (JMFAR-sel). The JMFAR was tested on signals registered in a free grazing environment, achieving an average weighted F1-score of 93%. Then, it was compared with a state-of-the-art algorithm, showing improved performance for estimation of grazing bouts (+19%). The JMFAR-ns variant reduced the computational cost by 25.4%, but achieved a slightly lower performance than the JMFAR. The good performance and low computational cost of JMFAR-ns supports the feasibility of using this algorithm variant for real-time implementation in low-cost embedded systems. The method presented within this publication is protected by a pending patent application: AR P20220100910.
Palabras clave: ACOUSTIC MONITORING , FEATURE ENGINEERING , MACHINE LEARNING , PATTERN RECOGNITION , PRECISION LIVESTOCK FARMING , RUMINANT FORAGING BEHAVIOUR
Ver el registro completo
 
Archivos asociados
Tamaño: 1.976Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/226245
URL: https://linkinghub.elsevier.com/retrieve/pii/S1537511023000594
DOI: http://dx.doi.org/10.1016/j.biosystemseng.2023.03.014
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Martínez Rau, Luciano Sebastián; Galli, Julio Ricardo; Utsumi, Santiago A.; et al.; Using segment-based features of jaw movements to recognise foraging activities in grazing cattle; Academic Press Inc Elsevier Science; Biosystems Engineering; 229; 5-2023; 69-84
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES