Mostrar el registro sencillo del ítem

dc.contributor.author
Quaino, Paola Monica  
dc.contributor.author
Nuñez, José Luis  
dc.contributor.author
Aradi, Bálint  
dc.contributor.author
van der Heide, Tammo  
dc.contributor.author
Santos, Elizabeth  
dc.contributor.author
Schmickler, Wolfgang  
dc.date.available
2024-02-08T10:02:31Z  
dc.date.issued
2023-10  
dc.identifier.citation
Quaino, Paola Monica; Nuñez, José Luis; Aradi, Bálint; van der Heide, Tammo; Santos, Elizabeth; et al.; Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does; John Wiley & Sons; ChemElectroChem; 10; 20; 10-2023; 1-7  
dc.identifier.issn
2196-0216  
dc.identifier.uri
http://hdl.handle.net/11336/226244  
dc.description.abstract
In modelling electrochemical interfaces it is important to treat electrode and electrolyte at the same level of theory. Density functional theory, which is usually the method of choice, suffers from a distinct disadvantage: The inner potential is calculated as the average of the total electrostatic potential. This includes the highly localized potential generated from the nuclei. The resulting inner potential is far too high, of the order of 3.5 V, and not relevant for electrochemistry. In the density functional based tight binding (DFTB) method the electrostatic potential is much smoother, as it stems from atomic charge fluctuations with respect to neutral reference atoms. The resulting values for the electrochemical inner potential are much lower and compare well with those obtained by other, elaborate methods. Thus DFTB recommends itself as a method for treating the electrochemical interface including the inner potential.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DFT  
dc.subject
INNER POTENTIAL  
dc.subject
POTENTIAL OF ZERO CHARGE  
dc.subject
TIGHT BINDING  
dc.subject
WORK FUNCTION  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-06T11:03:29Z  
dc.journal.volume
10  
dc.journal.number
20  
dc.journal.pagination
1-7  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Nuñez, José Luis. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Aradi, Bálint. Universitat Bremen; Alemania  
dc.description.fil
Fil: van der Heide, Tammo. Universitat Bremen; Alemania  
dc.description.fil
Fil: Santos, Elizabeth. Universitat Ulm; Alemania  
dc.description.fil
Fil: Schmickler, Wolfgang. Universitat Ulm; Alemania  
dc.journal.title
ChemElectroChem  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/celc.202300230