Artículo
Pseudo-dual pairs and branching of Discrete Series
Fecha de publicación:
02/2023
Editorial:
Cornell University
Revista:
arXiv.org
ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-53
Compartir