Artículo
Waring numbers over finite commutative local rings
Fecha de publicación:
10/2023
Editorial:
Elsevier Science
Revista:
Discrete Mathematics
ISSN:
0012-365X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study Waring numbers gR(k) for (R,m) a finite commutative local ring with identity and k∈N with (k,|R|)=1. We first relate the Waring number gR(k) with the diameter of the Cayley graphs GR(k)=Cay(R,UR(k)) and WR(k)=Cay(R,SR(k)) with UR(k)={xk:x∈R⁎} and SR(k)={xk:x∈R×}, distinguishing the cases where the graphs are directed or undirected. We show that in both cases (directed or undirected), the graph GR(k) can be obtained by blowing-up the vertices of GFq (k) a number |m| of times, with independence sets the cosets of m, where q is the size of the residue field R/m. Then, by using the above blowing-up, we reduce the study of the Waring number gR(k) over the local ring R to the computation of the Waring number g(k,q) over the finite residue field R/m≃Fq. In this way, using known results for Waring numbers over finite fields, we obtain several explicit results for Waring numbers over finite commutative local rings with identity.
Palabras clave:
DIAMETER
,
GENERALIZED PALEY GRAPHS
,
LOCAL RINGS
,
WARING GRAPHS
,
WARING NUMBERS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; Waring numbers over finite commutative local rings; Elsevier Science; Discrete Mathematics; 346; 10; 10-2023; 1-22
Compartir
Altmétricas