Artículo
An Iterative Warping and Clustering Algorithm to Estimate Multiple Wave-Shape Functions From a Nonstationary Oscillatory Signal
Fecha de publicación:
03/2023
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Transactions On Signal Processing
ISSN:
1053-587X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Nonsinusoidal oscillatory signals are everywhere. In practice, the nonsinusoidal oscillatory pattern, modeled as a 1-periodic wave-shape function (WSF), might vary from cycle to cycle. When there are finite different WSFs, s1,sK, so that the WSF jumps from one to another suddenly, the different WSFs and jumps encode useful information. We present an iterative warping and clustering algorithm to estimate s1,sK from a nonstationary oscillatory signal with time-varying amplitude and frequency, and hence the change points of the WSFs. The algorithm is a novel combination of time-frequency analysis, singular value decomposition entropy and vector spectral clustering. We demonstrate the efficiency of the proposed algorithm with simulated and real signals, including the voice signal, arterial blood pressure, electrocardiogram and accelerometer signal. Moreover, we provide a mathematical justification of the algorithm under the assumption that the amplitude and frequency of the signal are slowly time-varying and there are finite change points that model sudden changes from one wave-shape function to another one.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Colominas, Marcelo Alejandro; Wu, Hau Tieng; An Iterative Warping and Clustering Algorithm to Estimate Multiple Wave-Shape Functions From a Nonstationary Oscillatory Signal; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 71; 3-2023; 701-712
Compartir
Altmétricas