Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An Adaptive Soft Sensor for On-Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process

Sanseverinatti, Carlos IgnacioIcon ; Perdomo, Mariano Miguel; Clementi, Luis AlbertoIcon ; Vega, Jorge RubenIcon
Fecha de publicación: 05/2023
Editorial: Wiley VCH Verlag
Revista: Macromolecular Reaction Engineering
ISSN: 1862-832X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

Soft sensors (SS) are of importance in monitoring polymerization processes because numerous production and quality variables cannot be measured online. Adaptive SSs are of interest to maintain accurate estimations under disturbances and changes in operating points. This study proposes an adaptive SS to online estimate the mass conversion in the emulsion copolymerization required for the production of Styrene-Butadiene rubber (SBR). The SS includes a bias term calculated from sporadic laboratory measurements. Typically, the bias is updated every time a new laboratory report becomes available, but this strategy leads to unnecessarily frequent bias updates. The SS includes a statistic-based tool to avoid unnecessary bias updates and reduce the variability of the bias with respect to classical approaches. A control chart (CC) for individual determinations combined with an algorithmic Cusum is used to monitor the statistical stability of the average prediction error. The adaptive SS enables a bias update only when a loss of said statistical stability is detected. Several bias update methods are tested on a simulated industrial train of reactors for the latex production in the SBR process. The best results are obtained by combining the proposed CC-based approach with a previously developed Bayesian bias update strategy.
Palabras clave: BIAS UPDATING , CONTROL CHARTS , MASS CONVERSION , STATISTICAL STABILITY , STYRENE-BUTADIENE RUBBER , VARIABLE ESTIMATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.152Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225892
URL: https://onlinelibrary.wiley.com/doi/10.1002/mren.202300025
DOI: http://dx.doi.org/10.1002/mren.202300025
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Sanseverinatti, Carlos Ignacio; Perdomo, Mariano Miguel; Clementi, Luis Alberto; Vega, Jorge Ruben; An Adaptive Soft Sensor for On-Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process; Wiley VCH Verlag; Macromolecular Reaction Engineering; 17; 5; 5-2023; 1-29
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES