Mostrar el registro sencillo del ítem

dc.contributor.author
Pais, Carlos Marcelo  
dc.contributor.author
Godano, Matias I.  
dc.contributor.author
Juarez, Emanuel  
dc.contributor.author
Prado, Abelardo del  
dc.contributor.author
Biurrun Manresa, José Alberto  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.date.available
2024-02-06T11:48:15Z  
dc.date.issued
2023-06  
dc.identifier.citation
Pais, Carlos Marcelo; Godano, Matias I.; Juarez, Emanuel; Prado, Abelardo del; Biurrun Manresa, José Alberto; et al.; City-scale model for COVID-19 epidemiology with mobility and social activities represented by a set of hidden Markov models; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 160; 6-2023; 1-29  
dc.identifier.issn
0010-4825  
dc.identifier.uri
http://hdl.handle.net/11336/225891  
dc.description.abstract
Background and objective: SARS-CoV-2 emerged by the end of 2019 and became a global pandemic due to its rapid spread. Various outbreaks of the disease in different parts of the world have been studied, and epidemiological analyses of these outbreaks have been useful for developing models with the aim of tracking and predicting the spread of epidemics. In this paper, an agent-based model that predicts the local daily evolution of the number of people hospitalized in intensive care due to COVID-19 is presented. Methods: An agent-based model has been developed, taking into consideration the most relevant characteristics of the geography and climate of a mid-size city, its population and pathology statistics, and its social customs and mobility, including the state of public transportation. In addition to these inputs, the different phases of isolation and social distancing are also taken into account. By means of a set of hidden Markov models, the system captures and reproduces virus transmission associated with the stochastic nature of people's mobility and activities in the city. The spread of the virus in the host is also simulated by following the stages of the disease and by considering the existence of comorbidities and the proportion of asymptomatic carriers. Results: As a case study, the model was applied to Paraná city (Entre Ríos, Argentina) in the second half of 2020. The model adequately predicts the daily evolution of people hospitalized in intensive care due to COVID-19. This adequacy is reflected by the fact that the prediction of the model (including its dispersion), as with the data reported in the field, never exceeded 90% of the capacity of beds installed in the city. In addition, other epidemiological variables of interest, with discrimination by age range, were also adequately reproduced, such as the number of deaths, reported cases, and asymptomatic individuals. Conclusions: The model can be used to predict the most likely evolution of the number of cases and hospital bed occupancy in the short term. By adjusting the model to match the data on hospitalizations in intensive care units and deaths due to COVID-19, it is possible to analyze the impact of isolation and social distancing measures on the disease spread dynamics. In addition, it allows for simulating combinations of characteristics that would lead to a potential collapse in the health system due to lack of infrastructure as well as predicting the impact of social events or increases in people's mobility.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AGENT-BASED MODEL  
dc.subject
COVID-19  
dc.subject
EPIDEMIOLOGY  
dc.subject
GEOREFERENCING  
dc.subject
HIDDEN MARKOV MODEL  
dc.subject
VIRUS SPREAD  
dc.subject
VIRUS TRANSMISSION  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
City-scale model for COVID-19 epidemiology with mobility and social activities represented by a set of hidden Markov models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-05T13:58:45Z  
dc.journal.volume
160  
dc.journal.pagination
1-29  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pais, Carlos Marcelo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Godano, Matias I.. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Juarez, Emanuel. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Prado, Abelardo del. Universidad Nacional de Entre Ríos. Facultad de Trabajo Social; Argentina  
dc.description.fil
Fil: Biurrun Manresa, José Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.journal.title
Computers In Biology And Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0010482523004079  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compbiomed.2023.106942