Artículo
Cumulant expansion framework for internal gradient distributions tensors
Fecha de publicación:
04/2023
Editorial:
Elsevier
Revista:
Journal of Magnetic Resonance Open
ISSN:
2666-4410
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Magnetic resonance imaging is a powerful, non invasive tool for medical diagnosis. The low sensitivity for detecting the nuclear spin signals, typically limits the image resolution to several tens of micrometers in preclinical systems and millimeters in clinical scanners. Other sources of information, derived from diffusion processes of intrinsic molecules such as water in the tissues, allow getting morphological information at micrometric and submicrometric scales as potential biomarkers of several pathologies. Here we consider extracting this morphological information by probing the distribution of internal magnetic field gradients induced by the heterogeneous magnetic susceptibility of the medium. We use a cumulant expansion to derive the dephasing on the spin signal induced by the molecules that explore these internal gradients while diffusing. Based on the cumulant expansion, we define internal gradient distributions tensors (IGDT) and propose modulating gradient spin echo sequences to probe them. These IGDT contain microstructural morphological information that characterize porous media and biological tissues. We evaluate the IGDT effects on the magnetization decay with typical conditions of brain tissue and show that their effects can be experimentally observed. Our results thus provide a framework for exploiting IGDT as quantitative diagnostic tools.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Citación
Pedraza Pérez, Leonardo Andrés; Alvarez, Gonzalo Agustin; Cumulant expansion framework for internal gradient distributions tensors; Elsevier; Journal of Magnetic Resonance Open; 16-17; 4-2023; 1-23
Compartir
Altmétricas