Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Aplicación de un modelo de aprendizaje automático para la predicción de fracasos en implantes dentales

Ganz, Nancy BeatrizIcon ; Ares, Alicia EstherIcon ; Kuna, Horacio Daniel
Tipo del evento: Congreso
Nombre del evento: 4º Congreso de Ingeniería y Ciencias Aplicadas en las Tres Fronteras
Fecha del evento: 07/2020
Institución Organizadora: Instituto Federal de São Paulo;
Título de la revista: Actas del 4º Congreso de Ingeniería y Ciencias Aplicadas en las Tres Fronteras
Editorial: Instituto Federal de São Paulo
ISSN: 2675-4452
Idioma: Español
Clasificación temática:
Ciencias de la Computación

Resumen

Este trabajo estudia la aplicación de varios clasificadores para la predicción de casos de fracaso de un conjunto de datos de implantes dentales. El modelo abarcó los clasificadores: bosque aleatorio (RandomForestClassifier - RF), máquina de vector soporte (SVC), K vecino más próximo (KNeighborsClassifier - KNN), red bayesiana multinomial (MultinomialNB - MNB) y una red neuronal perceptrón multicapa (MLPClassifier - MLP). La implementación se realizó sobre Python con la librería ?Scikit-learn?. El conjunto de datos contaba con un total de 1165 tupas, 34 características y un atributo clase binario con dos valores posibles (éxito o fracaso). Los datos fueron recolectados en puntos característicos de la Provincia de Misiones, Argentina. Otra particularidad del conjunto fue su desbalance, 1009 casos etiquetados como éxito y 156 como fracaso. A partir del conjunto se seleccionó las características de mayor ganancia de información a través del método Chi Squared y se dividió de forma aleatoria para preservar la distribución de ambas clases en entrenamiento (70%) y evaluación (30%). Para lograr el mejor desempeño de cada clasificador, se calibró los híper parámetros configurando un espacio de búsqueda, un algoritmo de optimización (GridSearchCV), un método de evaluación (K fold de 10) y una medida de rendimiento (precisión de equilibrio). En la fase de entrenamiento y evaluación, se fijó los valores descubiertos y se realizó la integración de las predicciones logradas a través del promedio de las mismas, empleando un umbral para cada clase. En la figura 1 se presenta el enfoque propuesto. Como resultado, los clasificadores Random Forest y perceptrón multicapa lograron de forma individual un 68% de verdaderos negativos detectados, mientras que la integración de todas las predicciones permitió alcanzar más del 72% de casos correctamente identificados como fracasos.
Palabras clave: Aprendizaje automático , Clasificación , Predicción , Implantes Dentales
Ver el registro completo
 
Archivos asociados
Tamaño: 360.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225510
Colecciones
Eventos(IMAM)
Eventos de INST.DE MATERIALES DE MISIONES
Citación
Aplicación de un modelo de aprendizaje automático para la predicción de fracasos en implantes dentales; 4º Congreso de Ingeniería y Ciencias Aplicadas en las Tres Fronteras; Brasil; 2020; 27-27
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES