Mostrar el registro sencillo del ítem
dc.contributor.author
Curilef, S.
dc.contributor.author
Plastino, Ángel Ricardo
dc.contributor.author
Plastino, Ángel Luis
dc.date.available
2017-08-16T22:57:20Z
dc.date.issued
2013-02
dc.identifier.citation
Curilef, S.; Plastino, Ángel Ricardo; Plastino, Ángel Luis; Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 11; 2-2013; 2631-2642
dc.identifier.issn
0378-4371
dc.identifier.uri
http://hdl.handle.net/11336/22548
dc.description.abstract
Tsallis maximum entropy distributions provide useful tools for the study of a wide range of scenarios in mathematics, physics, and other fields. Here we apply a Tsallis maximum entropy ansatz, the q-Gaussian, to obtain time dependent wave-packet solutions to a nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro and Tsallis (NRT) [F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011) 140601]. The NRT nonlinear equation admits plane wave-like solutions (q-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the q-generalized thermostatistical formalism, is characterized by a parameter q and in the limit q→1 reduces to the standard, linear Schrödinger equation. The q-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known q-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q→1 limit the q-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrödinger equation. In the present work we also show that there are other families of nonlinear Schrödinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Tsallis Entropy
dc.subject
Nonlinear Scrhoedinger Equation
dc.subject
Power Laws
dc.subject
Wave Packets
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Tsallis’ maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrödinger equation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-07T15:55:50Z
dc.journal.volume
392
dc.journal.number
11
dc.journal.pagination
2631-2642
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Curilef, S.. Departamento de Física. Universidad Católica del Norte. Antofagasta; Chile
dc.description.fil
Fil: Plastino, Ángel Ricardo. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad de Granada; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; España
dc.journal.title
Physica A: Statistical Mechanics and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113001362
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2012.12.041
Archivos asociados