Mostrar el registro sencillo del ítem

dc.contributor.author
Obando, Marcos  
dc.contributor.author
Bassi, Andrea  
dc.contributor.author
Ducros, Nicolas  
dc.contributor.author
Mato, German  
dc.contributor.author
Correia, Teresa M.  
dc.date.available
2024-02-01T14:40:09Z  
dc.date.issued
2023-12  
dc.identifier.citation
Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-9  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/225457  
dc.description.abstract
In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
optical projection tomography  
dc.subject
deep learning  
dc.subject
acceleration  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Model-based deep learning framework for accelerated optical projection tomography  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-29T15:34:22Z  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
1-9  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina  
dc.description.fil
Fil: Bassi, Andrea. Politecnico di Milano; Italia  
dc.description.fil
Fil: Ducros, Nicolas. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Correia, Teresa M.. Kings College London (kcl);  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-47650-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-023-47650-3