Mostrar el registro sencillo del ítem
dc.contributor.author
Obando, Marcos
dc.contributor.author
Bassi, Andrea
dc.contributor.author
Ducros, Nicolas
dc.contributor.author
Mato, German
dc.contributor.author
Correia, Teresa M.
dc.date.available
2024-02-01T14:40:09Z
dc.date.issued
2023-12
dc.identifier.citation
Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-9
dc.identifier.issn
2045-2322
dc.identifier.uri
http://hdl.handle.net/11336/225457
dc.description.abstract
In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
optical projection tomography
dc.subject
deep learning
dc.subject
acceleration
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Model-based deep learning framework for accelerated optical projection tomography
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-29T15:34:22Z
dc.journal.volume
13
dc.journal.number
1
dc.journal.pagination
1-9
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
dc.description.fil
Fil: Bassi, Andrea. Politecnico di Milano; Italia
dc.description.fil
Fil: Ducros, Nicolas. Centre National de la Recherche Scientifique; Francia
dc.description.fil
Fil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Correia, Teresa M.. Kings College London (kcl);
dc.journal.title
Scientific Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-47650-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-023-47650-3
Archivos asociados