Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Location of faults based on deep learning with feature selection for meter placement in distribution power grids

Degano, Iván LeonardoIcon ; Fiaschetti, Leandro PedroIcon ; Lotito, Pablo AndresIcon
Fecha de publicación: 08/2023
Editorial: De Gruyter
Revista: International Journal of Emerging Electric Power Systems
ISSN: 1553-779X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

A problem of great interest for power distribution companies is ensuring uninterrupted service in extensive power distribution systems. Thus, the monitoring of networks and identification of system faults become essential. This work focuses on identifying a fault's occurrence from a small number of low-cost measurements in a power distribution system. The determination of sensor locations is based on the recent feature selection approach LassoNet, where the measurement locations are ranked. It provides the most informative measures during a fault resulting in a shortening data set. It is used as input to a deep neural network without a significant loss in accuracy. We validate our method on the IEEE 13 and 34 node test feeders for distribution systems to conduct the suggested approach's experimental studies.
Palabras clave: DEEP LEARNING , FAULT DETECTION , FEATURE SELECTION , GROUP LASSO , METER PLACEMENT , POWER GRIDS
Ver el registro completo
 
Archivos asociados
Tamaño: 977.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225405
DOI: https://doi.org/10.1515/ijeeps-2023-0073
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Degano, Iván Leonardo; Fiaschetti, Leandro Pedro; Lotito, Pablo Andres; Location of faults based on deep learning with feature selection for meter placement in distribution power grids; De Gruyter; International Journal of Emerging Electric Power Systems; 8-2023; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES