Mostrar el registro sencillo del ítem

dc.contributor.author
D'iorio, Stefanía  
dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
García Arancibia, Rodrigo  
dc.contributor.author
Girela, Ignacio Germán  
dc.date.available
2024-01-31T14:31:57Z  
dc.date.issued
2023-12  
dc.identifier.citation
D'iorio, Stefanía; Forzani, Liliana Maria; García Arancibia, Rodrigo; Girela, Ignacio Germán; Predictive power of composite socioeconomic indices for targeted programs: principal components and partial least squares; Springer; Quality & Quantity; 12-2023; 1-38  
dc.identifier.issn
0033-5177  
dc.identifier.uri
http://hdl.handle.net/11336/225360  
dc.description.abstract
Principal components analysis (PCA) and partial least squares (PLS) have been used for the construction of socioeconomic status (SES) indices to use as a predictor of the well-being status in targeted programs. Generally, these indicators are constructed as a linear combination of the first component. Due to the characteristics of the socioeconomic data, different extensions of PCA and PLS for non-metric variables have been proposed for these applications. In this paper, we compare the predictive performance of SES indices constructed using more than one component. Additionally, for the inclusion of non-metric variables, a variant of the normal mean coding is proposed that takes into account the multivariate nature of the variables, which we call multivariate normal mean coding (MNMC). Using simulations and real data, we found that PLS using MNMC as well as the classical dummy encoding method give the best predictive results with a more parsimonious SES index, both in regression and classification problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CATEGORICAL PREDICTORS  
dc.subject
CLASSIFICATION  
dc.subject
DIMENSION REDUCTION  
dc.subject
PROXY MEAN TEST  
dc.subject
REGRESSION  
dc.subject
SES  
dc.subject.classification
Economía, Econometría  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predictive power of composite socioeconomic indices for targeted programs: principal components and partial least squares  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-30T13:43:58Z  
dc.journal.pagination
1-38  
dc.journal.pais
Alemania  
dc.description.fil
Fil: D'iorio, Stefanía. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina  
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: García Arancibia, Rodrigo. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Girela, Ignacio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina  
dc.journal.title
Quality & Quantity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11135-023-01811-8