Mostrar el registro sencillo del ítem

dc.contributor.author
Zhao, Qibin  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Mandic, Danilo P.  
dc.contributor.author
Zhang, Liqing  
dc.contributor.author
Ball, Tonio  
dc.contributor.author
Schulze Bonhage, Andreas  
dc.contributor.author
Cichocki, Andrzej  
dc.date.available
2024-01-31T14:02:01Z  
dc.date.issued
2011  
dc.identifier.citation
Multilinear subspace regression: an orthogonal tensor decomposition approach; 25th Annual Conference on Neural Information Processing Systems; Granada; España; 2011; 1-9  
dc.identifier.isbn
9781618395993  
dc.identifier.uri
http://hdl.handle.net/11336/225339  
dc.description.abstract
A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed approach aims to maximize the correlation between the so derived latent variables and is shown to be suitable for the prediction of multidimensional dependent data from multidimensional independent data, where for the estimation of the latent variables we introduce an algorithm based on Multilinear Singular Value Decomposition (MSVD) on a specially defined cross-covariance tensor. It is next shown that in this way we are also able to unify the existing Partial Least Squares (PLS) and N-way PLS regression algorithms within the same framework. Simulations on benchmark synthetic data confirm the advantages of the proposed approach, in terms of its predictive ability and robustness, especially for small sample sizes. The potential of the proposed technique is further illustrated on a real world task of the decoding of human intracranial electrocorticogram (ECoG) from a simultaneously recorded scalp electroencephalograph (EEG).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Curran Associates Inc.  
dc.relation
https://nips.cc/Conferences/2011  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tensor network  
dc.subject
Linear Regression  
dc.subject
EEG  
dc.subject
EcoG  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Multilinear subspace regression: an orthogonal tensor decomposition approach  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-01-16T14:29:13Z  
dc.journal.volume
11  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Red Hook  
dc.description.fil
Fil: Zhao, Qibin. Riken. Brain Science Institute; Japón  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Mandic, Danilo P.. Imperial College Of Science And Technology; Reino Unido  
dc.description.fil
Fil: Zhang, Liqing. Shanghai Jiao Tong University; China  
dc.description.fil
Fil: Ball, Tonio. University Of Freiburg; Alemania  
dc.description.fil
Fil: Schulze Bonhage, Andreas. University Of Freidburg; Alemania  
dc.description.fil
Fil: Cichocki, Andrzej. Riken. Brain Science Institute; Japón  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper_files/paper/2011/file/1343777b8ead1cef5a79b78a1a48d805-Paper.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.5555/2986459.2986601  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/proceedings/10.5555/2986459  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
25th Annual Conference on Neural Information Processing Systems  
dc.date.evento
2011-12-12  
dc.description.ciudadEvento
Granada  
dc.description.paisEvento
España  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Neural Information Processing Systems Foundation  
dc.source.libro
NIPS'11: Proceedings of the 24th International Conference on Neural Information Processing Systems  
dc.date.eventoHasta
2011-12-17  
dc.type
Conferencia