Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Prediction of Evapotranspiration in the Pampean Plain from CERES Satellite Products and Machine Learning Techniques

Título: Predicción de la evapotranspiración en la región pampeana por medio de datos CERES y técnicas de aprendizaje automático
Carmona, FacundoIcon ; Faramiñán, Adán Matías GabrielIcon ; Rivas, Raul; Orte, Pablo FacundoIcon
Fecha de publicación: 09/2023
Editorial: Centro Argentino de Meteorólogos
Revista: Meteorológica
ISSN: 0325-187X
e-ISSN: 1850-468X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

 
A key aspect in agricultural zones, such as the Pampean Plain of Argentina, is to accurately estimate evapotranspiration rates to optimize crops and irrigation requirements and the floods and droughts prediction. In this sense, we evaluate six machine learning approaches to estimate the reference and actual evapotranspiration (ET0 and ETa) through CERES satellite products data. The results obtained applying machine learning techniques were compared with values obtained from ground-based information. After training and validating the algorithms, we observed that Support Vector machine-based Regressor (SVR) showed the best accuracy. Then, with an independent dataset, the calibrated SVR were tested. For predicting the reference evapotranspiration, we observed statistical errors of MAE = 0.437 mm d-1, and RMSE = 0.616 mm d-1, with a determination coefficient, R2, of 0.893. Regarding actual evapotranspiration modelling, we observed statistical errors of MAE = 0.422 mm d-1, and RMSE = 0.599 mm d-1, with a R2 of 0.614. Comparing the results obtained with the machine learning models developed another studies in the same field, we understand that the results are promising and represent a baseline for future studies. Combining CERES data with information from other sources may generate more specific evapotranspiration products, considering the different land covers.
 
Un aspecto clave en zonas agrícolas, como la llanura Pampeana argentina, es poder estimar con precisión las tasas de evapotranspiración para optimizar cultivos y requerimientos de riego, como así también la predicción de inundaciones y sequías. En este sentido, se evaluaron seis algoritmos de aprendizaje automático para estimar la evapotranspiración de referencia y la evapotranspiración real (ET0 y ETa, respectivamente) utilizando productos de satélite CERES como datos de entrada. Los valores modelados, aplicando técnicas de aprendizaje automático, se compararon con aquellos obtenidos a partir de información de terreno. Después de entrenar y validar los algoritmos, observamos que el Regresor con Vectores de Soporte (SVR) mostraba la mejor precisión. A continuación, con un conjunto de datos independiente, se testearon los algoritmos SVR calibrados. Para la predicción de la evapotranspiración de referencia se observaron errores estadísticos de MAE =0.437 mm d−1 y RMSE = 0.616 mm d−1, con un coeficiente de determinación R2= 0.893. Por otro lado, al predecir la evapotranspiración real, observamos errores estadísticos de MAE y RMSE de 0.422 mm d−1 y 0.599 mm d−1, respectivamente, con un R2 de 0.614. Al comparar los resultados obtenidos con los algoritmos de aprendizaje automático con aquellos arrojados por estudios en la misma área, entendemos que los resultados aquí mostrados son prometedores y representan una línea de base para futuros trabajos. La combinación de datos de CERES con información de otras fuentes puede generar productos de evapotranspiración más específicos, considerando además las diferentes coberturas del suelo.
 
Palabras clave: EVAPOTRANSPIRACIÓN , MACHINE LEARNING , CERES , REMOTE SENSING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.428Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225298
URL: https://revistas.unlp.edu.ar/meteorologica/article/view/15812
DOI: https://doi.org/10.24215/1850468Xe021
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Carmona, Facundo; Faramiñán, Adán Matías Gabriel; Rivas, Raul; Orte, Pablo Facundo; Prediction of Evapotranspiration in the Pampean Plain from CERES Satellite Products and Machine Learning Techniques; Centro Argentino de Meteorólogos; Meteorológica; 48; 2; 9-2023; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES