Mostrar el registro sencillo del ítem

dc.contributor.author
Otiniano, L.  
dc.contributor.author
Taboada Nuñez, Alvaro  
dc.contributor.author
Asorey, Hernán Gonzalo  
dc.contributor.author
Sidelnik, Iván Pedro  
dc.contributor.author
Castromonte, C.  
dc.contributor.author
Fauth, A.  
dc.date.available
2024-01-30T14:39:10Z  
dc.date.issued
2023-11  
dc.identifier.citation
Otiniano, L.; Taboada Nuñez, Alvaro; Asorey, Hernán Gonzalo; Sidelnik, Iván Pedro; Castromonte, C.; et al.; Measurement of the muon lifetime and the Michel spectrum in the LAGO water Cherenkov detectors as a tool to enhance the signal-to-noise ratio; Elsevier Science; Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament; 1056; 11-2023; 1-3  
dc.identifier.issn
0168-9002  
dc.identifier.uri
http://hdl.handle.net/11336/225237  
dc.description.abstract
The Latin American Giant Observatory (LAGO) consists of a network of water Cherenkov detectors (WCDs) installed in the Latin American region at various latitudes, from Sierra Negra in Mexico ,and altitudes from Lima, Peru at 20 m a.s.l. to Chacaltaya, Bolivia at 5500 m a.s.l. to the Antarctic Peninsula. The detectors of the network are built from commercial water tanks, so they have several geometries (cylindrical in general) and different water purification methods. All these features generate different profiles in the response to air shower particles measured by our detectors and produce pulse-shaped electronic signals. Common sources of noise in a WCD come from light leakage, electronic noise, and noise associated with the operation of photomultiplier tubes (PMTs) such as thermionic emission and after-pulses; they all could produce detectable pulses recorded by the LAGO data acquisition (DAQ) system. In LAGO WCDs, these noise signals are expected to present a short pulse width (of a few nanoseconds), while secondary radiation typically produces pulses of several tens of nanoseconds.We used data from the LAGO DAQ system, which digitises pulses at 40 MHz sampling rate on windows of 300 ns (12 temporal bins) and with a 10-bit resolution. The LAGO DAQ configuration uses a single threshold-based trigger in the third temporal bin. We proposed a secondary trigger threshold at the fourth bin to improve the noise rejection. In this work, we show how the optimal values for these triggers are now obtained from the measurement of the muon lifetime within the water volume and the resulting Michel spectrum. Our results were also simulated using the LAGO ARTI simulation framework to estimate the expected flux of secondary particles at the detector site; and the Meiga framework, a Geant4-based simulator used to estimate the WCDs response to the atmospheric radiation flux.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
cherenkov radiation  
dc.subject
michel spectrum  
dc.subject
LAGO  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Measurement of the muon lifetime and the Michel spectrum in the LAGO water Cherenkov detectors as a tool to enhance the signal-to-noise ratio  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-29T15:46:59Z  
dc.journal.volume
1056  
dc.journal.pagination
1-3  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Otiniano, L.. Universidad Nacional de Ingenieria; Perú  
dc.description.fil
Fil: Taboada Nuñez, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentina  
dc.description.fil
Fil: Asorey, Hernán Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Sidelnik, Iván Pedro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). División Neutrones y Reactores; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Castromonte, C.. Universidad Nacional de Ingenieria, Lima; Perú  
dc.description.fil
Fil: Fauth, A.. Universidade Estadual de Campinas; Brasil  
dc.journal.title
Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0168900223005570  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nima.2023.168567