Artículo
Entanglement entropy of a Rarita-Schwinger field in a sphere
Fecha de publicación:
10/2023
Editorial:
American Physical Society
Revista:
Physical Review D
ISSN:
2470-0010
e-ISSN:
2470-0029
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-22
Compartir
Altmétricas