Mostrar el registro sencillo del ítem

dc.contributor.author
Galarreta Rodriguez, Itziar  
dc.contributor.author
Lopez Ortega, Alberto  
dc.contributor.author
Garayo, Eneko  
dc.contributor.author
Beato López, Juan Jesús  
dc.contributor.author
la Roca, Paulo Matías  
dc.contributor.author
Sanchez Alarcos, Vicente  
dc.contributor.author
Recarte, Vicente  
dc.contributor.author
Gómez Polo, Cristina  
dc.contributor.author
Pérez Landazábal, Jose Ignacio  
dc.date.available
2024-01-30T12:39:14Z  
dc.date.issued
2023-05  
dc.identifier.citation
Galarreta Rodriguez, Itziar; Lopez Ortega, Alberto; Garayo, Eneko; Beato López, Juan Jesús; la Roca, Paulo Matías; et al.; Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation; Springer; Advanced Composites and Hybrid Materials; 6; 3; 5-2023; 1-13  
dc.identifier.issn
2522-0128  
dc.identifier.uri
http://hdl.handle.net/11336/225180  
dc.description.abstract
Additive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial Fe3O4 nanoparticles, with a semi-crystalline, biocompatible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternating magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous catalysis, water electrolysis, gas capture, or materials synthesis). Graphical Abstract: This paper presents the manufacture of novel magnetically activated 3D printable filaments, low cost and easy to manufacture, whereby selecting the desired composition, the heating capacity (ρ) generated under the application of an alternating magnetic field (Happ) can be adjusted to the needs of the user.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
3D PRINTING  
dc.subject
COMPOSITE MATERIALS  
dc.subject
FUSED DEPOSITION MODELLING  
dc.subject
MAGNETIC FILAMENTS  
dc.subject
MAGNETIC NANOPARTICLES  
dc.subject.classification
Recubrimientos y Películas  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-29T16:00:12Z  
dc.identifier.eissn
2522-0136  
dc.journal.volume
6  
dc.journal.number
3  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Galarreta Rodriguez, Itziar. Universidad Pública de Navarra; España  
dc.description.fil
Fil: Lopez Ortega, Alberto. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.description.fil
Fil: Garayo, Eneko. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.description.fil
Fil: Beato López, Juan Jesús. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.description.fil
Fil: la Roca, Paulo Matías. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Sanchez Alarcos, Vicente. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.description.fil
Fil: Recarte, Vicente. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.description.fil
Fil: Gómez Polo, Cristina. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.description.fil
Fil: Pérez Landazábal, Jose Ignacio. Universidad Publica de Navarra. Departamento de Ciencias.; España  
dc.journal.title
Advanced Composites and Hybrid Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s42114-023-00687-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s42114-023-00687-4