Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multi-objective genetic programming strategies for topic-based search with a focus on diversity and global recall

Baggio, CeciliaIcon ; Lorenzetti, Carlos MartinIcon ; Cecchini, Rocío LujánIcon ; Maguitman, Ana GabrielaIcon
Fecha de publicación: 11/2023
Editorial: PeerJ Inc.
Revista: PeerJ Computer Science
e-ISSN: 2376-5992
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Topic-based search systems retrieve items by contextualizing the information seeking process on a topic of interest to the user. A key issue in topic-based search of text resources is how to automatically generate multiple queries that reflect the topic of interest in such a way that precision, recall, and diversity are achieved. The problem of generating topic-based queries can be effectively addressed by Multi-Objective Evolutionary Algorithms, which have shown promising results. However, two common problems with such an approach are loss of diversity and low global recall when combining results from multiple queries. This work proposes a family of Multi-Objective Genetic Programming strategies based on objective functions that attempt to maximize precision and recall while minimizing the similarity among the retrieved results. To this end, we define three novel objective functions based on result set similarity and on the information theoretic notion of entropy. Extensive experiments allow us to conclude that while the proposed strategies significantly improve precision after a few generations, only some of them are able to maintain or improve global recall. A comparative analysis against previous strategies based on Multi-Objective Evolutionary Algorithms, indicates that the proposed approach is superior in terms of precision and global recall. Furthermore, when compared to query-term-selection methods based on existing state-of-the-art term-weighting schemes, the presented Multi-Objective Genetic Programming strategies demonstrate significantly higher levels of precision, recall, and F1-score, while maintaining competitive global recall. Finally, we identify the strengths and limitations of the strategies and conclude that the choice of objectives to be maximized or minimized should be guided by the application at hand.
Palabras clave: AUTOMATIC QUERY FORMULATION , DIVERSITY MAXIMIZATION , DIVERSITY PRESERVATION , GLOBAL RECALL , INFORMATION RETRIEVAL , INFORMATION-THEORETIC FITNESS FUNCTIONS , LEARNING COMPLEX QUERIES , MULTI-OBJECTIVE GENETIC PROGRAMMING , TOPIC-BASED SEARCH
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.041Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225085
URL: https://peerj.com/articles/cs-1710
DOI: http://dx.doi.org/10.7717/peerj-cs.1710
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Baggio, Cecilia; Lorenzetti, Carlos Martin; Cecchini, Rocío Luján; Maguitman, Ana Gabriela; Multi-objective genetic programming strategies for topic-based search with a focus on diversity and global recall; PeerJ Inc.; PeerJ Computer Science; 9; 11-2023; 1-39
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES