Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Dimant, Veronica Isabel  
dc.contributor.author
Rodríguez, Jorge Tomás  
dc.date.available
2024-01-26T13:25:43Z  
dc.date.issued
2023-04  
dc.identifier.citation
Carando, Daniel Germán; Dimant, Veronica Isabel; Rodríguez, Jorge Tomás; Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces; Springer; Mathematische Zeitschrift; 4-2023; 1-20  
dc.identifier.issn
0025-5874  
dc.identifier.uri
http://hdl.handle.net/11336/224961  
dc.description.abstract
We study homomorphisms on the algebra of analytic functions of bounded type on a Banach space. When the domain space lacks symmetric regularity, we show that in every fiber of the spectrum there are evaluations (in higher duals) which do not coincide with evaluations in the second dual. We also consider the commutativity of convolutions between evaluations. We show that in some Banach spaces $X$ (for example, $X=ell_1$) the only evaluations that commute with every other evaluation in $X´´$ are those in $X$. Finally, we establish conditions ensuring the symmetry of the canonical extension of a symmetric multilinear operator (on a non-symmetrically regular space) and present some applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Algebras of analytic functions  
dc.subject
Spectrum  
dc.subject
Extension of multilinear operators  
dc.subject
Arens regularity  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-25T14:09:19Z  
dc.journal.pagination
1-20  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina  
dc.description.fil
Fil: Rodríguez, Jorge Tomás. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.journal.title
Mathematische Zeitschrift