Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Dimant, Veronica Isabel
dc.contributor.author
Rodríguez, Jorge Tomás
dc.date.available
2024-01-26T13:25:43Z
dc.date.issued
2023-04
dc.identifier.citation
Carando, Daniel Germán; Dimant, Veronica Isabel; Rodríguez, Jorge Tomás; Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces; Springer; Mathematische Zeitschrift; 4-2023; 1-20
dc.identifier.issn
0025-5874
dc.identifier.uri
http://hdl.handle.net/11336/224961
dc.description.abstract
We study homomorphisms on the algebra of analytic functions of bounded type on a Banach space. When the domain space lacks symmetric regularity, we show that in every fiber of the spectrum there are evaluations (in higher duals) which do not coincide with evaluations in the second dual. We also consider the commutativity of convolutions between evaluations. We show that in some Banach spaces $X$ (for example, $X=ell_1$) the only evaluations that commute with every other evaluation in $X´´$ are those in $X$. Finally, we establish conditions ensuring the symmetry of the canonical extension of a symmetric multilinear operator (on a non-symmetrically regular space) and present some applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Algebras of analytic functions
dc.subject
Spectrum
dc.subject
Extension of multilinear operators
dc.subject
Arens regularity
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-25T14:09:19Z
dc.journal.pagination
1-20
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
dc.description.fil
Fil: Rodríguez, Jorge Tomás. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
dc.journal.title
Mathematische Zeitschrift
Archivos asociados