Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples

Moguilner, Sebastian; Whelan, Robert; Adams, Hieab; Valcour, Victor; Tagliazucchi, Enzo RodolfoIcon ; Ibañez, Agustin MarianoIcon
Fecha de publicación: 04/2023
Editorial: Elsevier
Revista: eBioMedicine
ISSN: 2352-3964
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurociencias

Resumen

Background: Dementia's diagnostic protocols are mostly based on standardised neuroimaging data collected in the Global North from homogeneous samples. In other non-stereotypical samples (participants with diverse admixture, genetics, demographics, MRI signals, or cultural origins), classifications of disease are difficult due to demographic and region-specific sample heterogeneities, lower quality scanners, and non-harmonised pipelines. Methods: We implemented a fully automatic computer-vision classifier using deep learning neural networks. A DenseNet was applied on raw (unpreprocessed) data from 3000 participants (behavioural variant frontotemporal dementia-bvFTD, Alzheimer's disease-AD, and healthy controls; both male and female as self-reported by participants). We tested our results in demographically matched and unmatched samples to discard possible biases and performed multiple out-of-sample validations. Findings: Robust classification results across all groups were achieved from standardised 3T neuroimaging data from the Global North, which also generalised to standardised 3T neuroimaging data from Latin America. Moreover, DenseNet also generalised to non-standardised, routine 1.5T clinical images from Latin America. These generalisations were robust in samples with heterogenous MRI recordings and were not confounded by demographics (i.e., were robust in both matched and unmatched samples, and when incorporating demographic variables in a multifeatured model). Model interpretability analysis using occlusion sensitivity evidenced core pathophysiological regions for each disease (mainly the hippocampus in AD, and the insula in bvFTD) demonstrating biological specificity and plausibility. Interpretation: The generalisable approach outlined here could be used in the future to aid clinician decision-making in diverse samples. Funding: The specific funding of this article is provided in the acknowledgements section.
Palabras clave: COMPUTER VISION , DEEP LEARNING , DEMENTIA , REPRODUCIBILITY , UNPROCESSED MRI
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.179Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224957
DOI: http://dx.doi.org/10.1016/j.ebiom.2023.104540
Colecciones
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Moguilner, Sebastian; Whelan, Robert; Adams, Hieab; Valcour, Victor; Tagliazucchi, Enzo Rodolfo; et al.; Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples; Elsevier; eBioMedicine; 90; 4-2023; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES